Grazing affects periphytic algal biomass in the periphyton-macrophyte relationship independently of the substrate type and nutrient status

Algae-substrate relationship

Submitted: 4 September 2019
Accepted: 10 January 2020
Published: 22 January 2020
Abstract Views: 952
PDF: 470
HTML: 40
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The macrophyte–algae relationship has primary importance in affecting the functioning of shallow lake ecosystems. However, how substratum type, grazing, and nutrient status affect the relationship, is still largely unknown. Here, we studied algal assemblages covering either the submerged macrophyte, Ceratophyllum demersum, or artificial plastic plants with similar morphological complexity to answer these questions. Nutrient status was assessed as eu- and hypertrophic conditions in two separate lakes. In contrast to previous studies, the algal community on artificial substrates resembled to those observed on C. demersum. Independently of nutrient status (lakes), algae colonised artificial substrates intensively, but the highest algal biomass was observed in the hypertrophic lake. The community of periphytic algae was represented by diatoms, chlorophytes, and cyanobacteria. In the eutrophic lake, rather diatoms were present with high relative abundance, whereas, in the hypertrophic lake, rather cyanobacteria prevailed. Grazing pressure was high in both lakes and in the case of both substrate types, affecting the biomass of periphytic algae significantly. Our results indicate that macroinvertebrate grazing plays a crucial role in affecting periphytic algal biomass, independently of nutrient status and substratum type in shallow lakes.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ács E, Borsodi AK, Makk J, Molnar P, Mozes A, Rusznyak A, Reskone MN,Kiss KT.2003. Algological and bacteriological investigations on reed periphyton in Lake Velencei, Hungary. Hydrobiologia 506-509:549-557. DOI: https://doi.org/10.1023/B:HYDR.0000008591.89558.75
Adey W, Luckett C, Jensen K.1993. Phosphorous removal from natural waters using controlled algal production. Restoration Ecology 1:29-39. DOI: https://doi.org/10.1111/j.1526-100X.1993.tb00006.x
Azim ME, Beveridge MCM, van Dam AA, Verdegem MCJ. 2005.Periphyton and aquatic production: an introduction. In: Azim MA et al., eds. Periphyton. Ecology, exploitation and management.UK: CABI Publishing, pp. 2-13.
Balci P, Kennedy JH. 2003. Comparison of chironomids and other macroinvertebrates associated with Myriophyllum spicatum and Heteranthera dubia. J Freshwater Ecol 18: 235-247. DOI: https://doi.org/10.1080/02705060.2003.9664490
Bernatowicz S. 1960. Methods of plants studies in lakes. Rocz Nauk Rol 77:61-79.
Bernhardt ES, Likens GE. 2004. Controls on periphyton biomass in heterotrophic streams. Freshw Biol 49:14–27. DOI: https://doi.org/10.1046/j.1365-2426.2003.01161.x
Burkholder JM. 1996. Interactions of benthic algae with their substrata. In: Stevenson RJ, Bothwell M, Lowe R, eds. Algal ecology: benthic algae in freshwater ecosystems. New York,USA: Academic Press, pp. 253-297.
Cattaneo A, Kalff J. 1978. Seasonal changes in the epiphyte community of natural and artificial macrophytes in Lake Memphremagog (Que. &Vt.). Hydrobiologia 60: 135-144. DOI: https://doi.org/10.1007/BF00163179
Cattaneo A, Amireault MC. 1992. How artificial are artificial substrata for periphyton? J N Am Benthol Soc11:244–256. DOI: https://doi.org/10.2307/1467389
Degans H, De Meester L.2002. Top–down control of natural phyto- and bacterioplankton prey communities by Daphnia magna and by the natural zooplankton community of the hypertrophic Lake Blankaart. Hydrobiologia 479:39–49. DOI: https://doi.org/10.1023/A:1021002128426
Doods WK. 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. J Phycol 39:840-849. DOI: https://doi.org/10.1046/j.1529-8817.2003.02081.x
dos Santos TR, Ferragut C, de Mattos Bicudo CE.2013.Does macrophyte architecture influence periphyton? Relationships among Utriculariafoliosa, periphyton assemblage structure and its nutrient (C, N, P) status. Hydrobiologia 714:71–83. DOI: https://doi.org/10.1007/s10750-013-1531-8
Erhard D, Gross EM.2006.Allelopathic activity of Elodea canadensis and E. nuttallii against epiphytes and phytoplankton. Aquat Bot 85:203–211.
Fontaine TD, Nigh DG. 1983. Characteristics of epiphytescommunities on natural and artificialsubmersedloticplants:substrateeffects. Arch. Hydrobiol 96: 293-301.
Gaiser EE, Texler JC, Richards JH, Childers DL, Lee D, Edwards AL, Scinto LJ, Jayachandaran K, Noe GB, Jones RD.2005. Cascading ecological effects of low-level phosphorous enrichment in the Florida Everglades. J Environ Qual34:717-723. DOI: https://doi.org/10.2134/jeq2005.0717
Gaiser EE, Childers DL, Jones RD, Richards JH, Scinto LJ, Texler JC.2006.Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnol Oceanogr 51:617-630. DOI: https://doi.org/10.4319/lo.2006.51.1_part_2.0617
Gosselain V, Hudon C, Cattaneo A, Gagnon P. 2005. Physical variables driving epiphytic algal biomass in a dense macrophyte bed of the St. Lawrence River (Quebec, Canada). Hydrobiologia 534:11–22.
Gross EM, Feldbaum C, Graf A. 2003.Epiphyte biomass and elemental composition onsubmersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506/509:559-65. DOI: https://doi.org/10.1023/B:HYDR.0000008538.68268.82
Hameed HA.2003.The colonization of periphytic diatom species on artificial substrates in the Ashar canal, Basrah, Iraq. Limnologica 33:54-61. DOI: https://doi.org/10.1016/S0075-9511(03)80007-5
Hansen JP, Wikström SA, Axemar H, Kautsky L.2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquat Ecol 45:11-22. DOI: https://doi.org/10.1007/s10452-010-9319-7
Hansson LA. 1988. Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakes. Limnol Oceanogr 33:121–128. DOI: https://doi.org/10.4319/lo.1988.33.1.0121
Hao B, Wu H, Cao Y, Xing W, Jeppesen E, Li W.2017. Comparison of periphyton communities on natural and artificial macrophytes with contrasting morphological structures. Freshw Biol62:1783–1793. DOI: https://doi.org/10.1111/fwb.12991
Hermanowicz W, Dojlido J, Dożańska W, Koziorowski B, Zerbe J. 1999. Fizyczno-chemiczne badanie wody i ścieków. Arkady, Warszawa.
Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. DOI: https://doi.org/10.1046/j.1529-8817.1999.3520403.x
ISO 10260. 1992. Water quality. Measurement of biochemical parameters. Spectrometric determination of the chlorophyll-a concentration. PKN, Warszawa.
Jones JI, Moss B, Eaton JW, Young JO. 2000. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists?Freshw Biol 43:591–604. DOI: https://doi.org/10.1046/j.1365-2427.2000.t01-1-00538.x
Kiss MK, Lakatos G,Borcis G, Gido Z,Deak C. 2003. Littoral macrophyte-periphyton complexes in two Hungarian shallow waters. Hydrobiologia 506-509: 541-548. DOI: https://doi.org/10.1023/B:HYDR.0000008594.48184.ca
Kralj K, Plenkovic-Moraj A, Gligora M, Primc-Habdija B, Sipos L.2006.Structure of periphytic community on artificial substrata: influence of depth, slide orientation and colonization time in karstic Lake Visovacko, Croatia. Hydrobiologia 560:249-258. DOI: https://doi.org/10.1007/s10750-005-1330-y
Lane ChM, Taffs KH, Corfield JL. 2003.A comparison of diatom community structure on natural and artificial substrata. Hydrobiologia 493:65-79. DOI: https://doi.org/10.1023/A:1025498732371
Laugaste R, Reunanen M. 2005. The composition and density of epiphyton on some macrophyte species in the partly meromictic Lake Verevi. Hydrobiologia 547: 137-150. DOI: https://doi.org/10.1007/s10750-005-4155-9
Liboriussen L, Jeppesen E. 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshw Biol 51:95–109. DOI: https://doi.org/10.1111/j.1365-2427.2005.01481.x
McCormick PV, O`Dell MB.1996. Quantifying periphyton responses to phosphorous enrichment in the Florida Everglades: a synoptic-experimental approach. J N Am Benthol Soc 15:450-468. DOI: https://doi.org/10.2307/1467798
McCormick PV, Newman S, Miao S, Gawlik DE, Marley D, Reddy KR, Fontaine TD.2002. Effects of anthropogenic phosphorous inputs on the Everglades. InPorter JW, Porter KG, eds. The Everglades, Florida Bay and coral reefs of the Florida Keys: An Ecosystem Sourcebook. Boca Raton, FL, USA, CRC Press. pp. 83-126.
Melzer A.1999. Aquatic macrophytes as tools for lake management. Hydrobiologia 395/396: 181-190. DOI: https://doi.org/10.1023/A:1017001703033
Morin JON. 1986. Initial colonization of periphyton on natural anartificial apices of Myriophyllum heterophyllum Michx. Freshw Biol 16: 685–694. DOI: https://doi.org/10.1111/j.1365-2427.1986.tb01010.x
Müller U.2000.Periphytic primary production during spring. A sink or source of oxygen in the littoral zone? Limnologica 30:169–174.
Penning WE, Mjelde M, Dudley B, Hellsten S, Hanganu J, Kolada A, van den Berg M, Poikane S, Phillips G, Willby N,EckeF. 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquat Ecol 42:237–251. DOI: https://doi.org/10.1007/s10452-008-9182-y
Pete D, Gobert S, Lepoint G, Poulicek M, Bouquegneau JM.2007. Early colonization of Posidonia oceanica (L.) Delile byepiphytes: Comparison between natural and artificial seagrass leaves. Proceeding of the Third Mediterranean Symposium on Marine Vegetation (Marseilles, 27–29 March 2007):151–157.
Pettit N, Ward D, Adame M, Valdez D, Bunn S. 2016. Influence of aquatic plant architecture on epiphyte biomass on a tropical river floodplain. Aquat Bot 129:35–43. DOI: https://doi.org/10.1016/j.aquabot.2015.12.001
Pinder LCV. 1992. Biology of epiphytic Chironomidae (Diptera: Nematocera) in chalk stream. Hydrobiologia 248:39-51. DOI: https://doi.org/10.1007/BF00008884
Roberts E, Kroker J, Körner S, Nicklisch A. 2003. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia 506:525–530. DOI: https://doi.org/10.1023/B:HYDR.0000008560.73832.1c
Rodusky AJ, Steinman AD, East TL, Sharfstein B, Meeker RH. 2001. Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeechobee, USA. Hydrobiologia 448: 27–39.
Sand-Jensen K, Borum J.1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat Bot 41:137-175. DOI: https://doi.org/10.1016/0304-3770(91)90042-4
Szlauer-Łukaszewska A. 2007. Succession of periphyton developing on artificial substrate immersed in polysaprobic wastewater reservoir. Pol J Environ Stud 16:753–762.
Tall L, Cattaneo A, Cloutier L, Dray S, Legendre P. 2006. Resource partitioning in a grazer guild feeding on a multilayer diatom mat. J N Am Benthol Soc 25:800-810. DOI: https://doi.org/10.1899/0887-3593(2006)025[0800:RPIAGG]2.0.CO;2
Taniguchi H, Nakano S, Tokeshi M.2003.Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshw Biol 48:718-728. DOI: https://doi.org/10.1046/j.1365-2427.2003.01047.x
Tarkowska-Kukuryk M, Mieczan T. 2012.Effect of substrate on periphyton communities and their relationships among food web components in a shallow hypertrophic lake. J Limnol 71:53-64. DOI: https://doi.org/10.4081/jlimnol.2012.e30
Tarkowska-Kukuryk M.2013.Periphytic algae as food source for grazing chironomids in a shallow phytoplankton dominated lake. Limnologica 43:254-264. DOI: https://doi.org/10.1016/j.limno.2012.11.004
Tarkowska-Kukuryk M.2014. Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: effect of macrophyte species and food resources. Limnology 15:141-153. DOI: https://doi.org/10.1007/s10201-014-0425-4
TerBraak CJF, Šmilauer P. 2002. CANOCO Reference Manual and User`s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca, NY, USA).
Toporowska M., Pawlik-Skowrońska B., Wojtal AZ. 2008. Epiphytic algae on Stratiotesaloides L., Potamogetonlucens L., Ceratophyllumdemersum L. and Chara spp. in amacrophyte-dominated lake. Oceanol Hydrobiol St 37:51-63.
Townsend SA, Gell PA. 2005. The role of substrate type on benthic diatom assemblages in the Daly and Roper Rivers of the Australian wet/drytropics. Hydrobiologia 548: 101–115. DOI: https://doi.org/10.1007/s10750-005-0828-7
Tunca H,Sevindik TO, Bal DN, Arabaci S. 2014. Community structure of epiphytic algae on three different macrophytes at Acarlar floodplain forest (northern Turkey). Chinese J Oceanol Limnol 32:845–857. DOI: https://doi.org/10.1007/s00343-014-3205-4
van den Hoek C, Mann DG, Jahns HM.1995. Algae. An introduction to phycology. Cambridge University Press, Cambridge.

Edited by

Andras Abonyi, Institute of Ecology and Botany, Vácrátót, Hungary

Supporting Agencies

Polish National Science Foundation under Grant N N304 3391 33 “Trophic interactions between macrophytes, periphytic algae, epiphytic invertebrates in shallow lake ecosystems”.

How to Cite

Tarkowska-Kukuryk, Monika, Wojciech Pęczuła, and Tomasz Mieczan. 2020. “Grazing Affects Periphytic Algal Biomass in the Periphyton-Macrophyte Relationship Independently of the Substrate Type and Nutrient Status: Algae-Substrate Relationship”. Journal of Limnology 79 (2). https://doi.org/10.4081/jlimnol.2020.1941.

Similar Articles

<< < 81 82 83 84 85 86 87 88 89 90 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo