The role of hydrological and spatial factors for the vegetation of Central European springs

Submitted: 3 December 2011
Accepted: 3 December 2011
Published: 1 September 2011
Abstract Views: 2183
PDF: 696
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Understanding the driving forces affecting species occurrences is a prerequisite for determining the indicator suitability of crenic plants. We analysed 18 environmental variables in a two-step approach, evaluating their ability to explain the species composition of 222 springs on five siliceous mountain ranges, in central Germany and north-west Czech Republic (49.9°–50.8°N, 10.6°–12.8°E). First, we identified the significant environmental variables in three subsets of spatial, hydrophysical and hydrochemical variables using a forward-selection procedure. We then performed a partial canonical correspondence analysis (pCCA) to estimate the influence of each subset alone, as well as in combinations. We also used a multiple response permutation procedure (MRPP) to compare the five regions with respect to the dissimilarity of their vegetation composition and environmental variables. Hydrochemical factors played a fundamental role in determining the plant community of the investigated springs. Spatial factors, in particular altitude, were correlated with the hydrochemical factors, but were less important. Hydrophysical factors played only a marginal role. More precisely, species occurrence was mainly driven by a gradient of nutrient availability, which in turn reflected the acidity status. This gradient was primarily represented by high Al, Cd, and Mn concentrations in acidic crenic waters, high Ca and Mg concentrations were encountered in circumneutral springs. By comparing the five regions we could show that there are spatial patterns in the vegetation of springs, which provide valuable ecological information on the water quality. We therefore suggest that biomonitoring approaches to vegetation are suitable for revealing the acidity status of springs and their forested catchments.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

AUDORFF, Volker, Jutta KAPFER, and Carl BEIERKUHNLEIN. 2011. “The Role of Hydrological and Spatial Factors for the Vegetation of Central European Springs”. Journal of Limnology 70 (s1):9-22. https://doi.org/10.4081/jlimnol.2011.s1.9.

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo