Plasticity of life-history traits in the Draa barbel Luciobarbus lepineyi (Pellegrin, 1939) (Actinopterygii: Cyprinidae) in the sub-Saharan Draa basin, Morocco: effect of change in flow regime and salinity

Submitted: 27 May 2024
Accepted: 2 August 2024
Published: 16 September 2024
Abstract Views: 55
PDF: 35
HTML: 1
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The Draa barbel Luciobarbus lepineyi (Pellegrin, 1939), an endemic and unique cyprinid of the arid Draa river basin, southern Morocco, faces a range of multiple environmental stressors, especially in intermittent rivers and ephemeral streams (IRES). We assessed the effects of flow intermittence and salinisation on the somatic condition, and life-history traits in Draa barbels. We used the scaled-mass index (SMi) to evaluate the mean individual somatic body condition in nine populations. For three contrasted localities: Iriri (IR), Mghimima (MG), and Sid El Mokhtar (SM), we aged fish from scales and calculated von Bertalanffy growth parameters using the Beverton-Holt procedure. We used these parameters to estimate growth indices and performance, size and age at maturity, longevity, and mortality rates. Mean SMi decreased markedly with increasing salinity, revealing a normal condition at 0.4 PSU in IR, a poor condition in MG at 4 PSU, and a very poor condition at 10 PSU in SM. Growth rates (k) increased with salinity. Conversely, asymptotic lengths L∞ and growth performances (phi-prime, φ′) decreased with salinity and flow intermittency. The potential longevity tmax decreased with the increase in salinity. On the other hand, the mortality rate increased with flow intermittence and salinity. The Draa barbels in the saline IRES of the arid Draa basin compensate for the high mortality by growing faster but less efficiently. They mature at an earlier age and have shorter longevity. With this high life-history plasticity, the Draa barbel would constitute a good ecological indicator and a sentinel for salinisation in variable aquatic environments in the arid Draa river basin. 

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Addy K, Gold AJ, Welsh MK, August PV Stolt MH, Arango CP, Groffman PM, 2019. Connectivity and nitrate uptake potential of intermittent streams in the Northeast USA. Front Ecol Evol 7:225. DOI: https://doi.org/10.3389/fevo.2019.00225
Ahirwal S, Das PC, Sarma K, Kumar TG, Singh J, Kamble SP, 2021. Effect of salinity changes on growth, survival and biochemical parameters of freshwater fish Gibelion catla (Hamilton, 1822). J Environ Biol 42:1519-1525. DOI: https://doi.org/10.22438/jeb/42/6/MRN-1837
Ainou H, Panfili J, Pariselle A, Labonne M, Louizi H, Benhoussa A, et al., 2023. Life-history traits in two invasive species of tilapias in Morocco. Afr J Aquat Sci 48:223-235. DOI: https://doi.org/10.2989/16085914.2023.2197464
Allen RL, 1976. Method for comparing fish growth curves. New Zeal J Mar Fresh 10:687-692. DOI: https://doi.org/10.1080/00288330.1976.9515649
Almaca C, 1984. Form relationship among Western Palearctic species of Barbus (Cyprinidae, Pisces). Arq Mus Boc 2:207-248.
Alp A, Kara CH, Büyükçapar M, Bülbül O, 2005. Age, growth and condition of Capoeta capoeta angorae, Hanko 1924 from the upper water systems of the River Ceyhan, Turkey. Turk J Vet Anim Sci 29:665-676.
Bajaj S, 2017. Effect of environmental factors on fish growth. Indian J Sci 12:87-91.
Banan A, Forouharmehr A, Kalbassi MR, Esmaeilbeigi M, Bahmani M, Sadati MY, et al. 2022. Salinity gradients exacerbate the genotoxicity and bioaccumulation of silver nanoparticles in fingerling Persian sturgeon (Acipenser persicus). Reg Stud Mar Sci 52:102264. DOI: https://doi.org/10.1016/j.rsma.2022.102264
Berger E, Bossenbroek L, Beermann AJ, Schäfer RB, Znari M, Riethmüller S, et al., 2021. Social-ecological interactions in the Draa River Basin, southern Morocco: Towards nature conservation and human well-being using the IPBES framework. Sci Total Environ 769:144492. DOI: https://doi.org/10.1016/j.scitotenv.2020.144492
Berrouk H, Sahtout F, Boualleg C, 2020. Biological parameters of Luciobarbus callensis populates Beni-haroun dam, North-Eastern Algeria. Biodiversitas 21:5691-5697. DOI: https://doi.org/10.13057/biodiv/d211214
Bianco PG, Nordlie F, 2008. The salinity tolerance of Pseudophoxinus stymphalicus (Cyprinidae) and Valencia letourneuxi (Valenciidae) from western Greece suggests a revision of the ecological categories of freshwater fishes. Ital J Zool 75:285-293. DOI: https://doi.org/10.1080/11250000801931753
Brahimi A, Tarai N, Benhassane A, Henrard A, Libois R, 2016. Genetic and morphological consequences of Quaternary glaciations: A relic barbel lineage (Luciobarbus pallaryi, Cyprinidae) of Guir Basin (Algeria). C R Biol 339:83-98. DOI: https://doi.org/10.1016/j.crvi.2015.12.003
Busche H, 2008. Hydrology of the Draa Basin, 2nd ed. Impetus Atlas 43-44.
Clavero M, Esquivias J, Qninba A, Riesco M, Calzada J, Ribeiro F, et al., 2014. Fish invading deserts: non‐native species in arid Moroccan rivers. Aquat Conserv 25:49-60. DOI: https://doi.org/10.1002/aqc.2487
Clavero M, Qninba A, Riesco M, Esquivias J, Calzada J, Delibes M, 2017. Moroccan desert rivers: fish on the arid extreme of Mediterranean streams. FiSHMED 003. DOI: https://doi.org/10.29094/FiSHMED.2017.003
Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz CJ, 2013. Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157-67. DOI: https://doi.org/10.1016/j.envpol.2012.10.011
Datry T, Bonada N, Boulton A, 2017. Intermittent rivers and ephemeral streams: ecology and management. Academic Press, London: 622 pp.
De Graaf IEM, Gleeson T, van Beek (Rens) LPH, Sutanudjaja EH, Bierkens MFP, 2019. Environmental flow limits to global groundwater pumping. Nature 574:90-94. DOI: https://doi.org/10.1038/s41586-019-1594-4
de Jong C, Cappy S, Finckh M, Funk D, 2008. A transdisciplinary analysis of water problems in the mountainous karst areas of Morocco. Eng Geol 99:228-238. DOI: https://doi.org/10.1016/j.enggeo.2007.11.021
de Jong C, Machauer R, Leavesely G, Cappy S, Poete P, Schulz O, 2005. Integrated hydrological modelling concepts for a peripheral mountainous semi-arid basin in southern Morocco, p. 219-227. In: R. Escadafal and M.L. Paracchini (eds.), Proceedings of the Workshop Geomatics for Land and Water Management: Achievements and Challenges in the Euromed Context. European Commission, Luxembourg.
Froese R, Binohlan C, 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J Fish Biol 56:758-773. DOI: https://doi.org/10.1111/j.1095-8649.2000.tb00870.x
Froese R, 2022. Estimating somatic growth of fishes from maximum age or maturity. Acta Ichthyol Piscat 52:125-133. DOI: https://doi.org/10.3897/aiep.52.80093
García N, Cuttelod A, Abdul Malak D, 2010. The status and distribution of freshwater biodiversity in Northern Africa. IUCN, Gland: 141 pp.
Gallucci VF, Quinn TJ, 1979. Reparameterizing, fitting ,and testing a simple growth model. Trans Am Fish Soc 108:14-25. DOI: https://doi.org/10.1577/1548-8659(1979)108<14:RFATAS>2.0.CO;2
Geng L, Tong G, Jiang H, Xu W, 2016. Effect of salinity and alkalinity on Luciobarbus capito gill Na+/K+-ATPase enzyme activity, plasma ion concentration, and osmotic pressure. Biomed Res Int 2016:4605839. DOI: https://doi.org/10.1155/2016/4605839
Glarou M, Vourka A, Vardakas L, Andriopoulou A, Skoulikidis N, Kalogianni E, 2019. Plasticity in life history traits of a cyprinid fish in an intermittent river. Knowl Manag Aquat Ecosyst 420:25. DOI: https://doi.org/10.1051/kmae/2019015
Hajiahmadian M, Rabbaniha M, Ghafari Farsani H, Gerami MH, Shahbazi Naserabad S, 2018. Age, growth and spawning season of Luciobarbus esocinus Heckel, 1843 in Gamasiab River, Iran. J Fish Sci 17:194-207.
IUCN, 2023. The IUCN Red List of Threatened Species. Version 2023-1. Available from: https://www.iucnredlist.org
Kaletová T, Loures L, Castanho RA, Aydin E, da Gama JT, Loures A, Truchy A, 2019. Relevance of intermittent rivers and streams in agricultural landscape and their impact on provided ecosystem services- a Mediterranean case study. Int J Environ Res Public Health 16:2693. DOI: https://doi.org/10.3390/ijerph16152693
Karametsidis G, Rueda L, Bellido JM, Esteban A, García E, De Sola LG, et al., 2023. The trade-off between condition and growth shapes juveniles’ survival of harvested demersal fish of the Mediterranean sea. Mar Environ Res 184:105844. DOI: https://doi.org/10.1016/j.marenvres.2022.105844
Kraiem MM, 1986. [Influence de la salinité sur la présence des barbeaux Barbus callensis Valenciennes, 1842 (Poissons, Cyprinidae) dans le lac Ichkeul (Tunisie Septentrionale)].[Article in French]. Bull Inst Natn Scient Tech Oceanogr Peche Salammbo 13:89-94.
Kraiem MM, Pattee E. 1988. Salinity tolerance of the barbel, Barbus callensis Valenciennes, 1842 (Pisces, Cyprinidae) and its ecological significance. Hydrobiologia 166:263-267. DOI: https://doi.org/10.1007/BF00008135
Kültz D, 2015. Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907-1914. DOI: https://doi.org/10.1242/jeb.118695
Lester NP, Shuter BJ, Abrams PA, 2004. Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction. Proc Biol Sci 271:1625-1631. DOI: https://doi.org/10.1098/rspb.2004.2778
Maceda‐Veiga A, Green AJ, De Sostoa A, 2014. Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in northeastern Spain and provides a novel indicator of ecosystem health. Freshwater Biol 59:1145-1160. DOI: https://doi.org/10.1111/fwb.12336
Magalhães MF, Beja P, Schlosser IJ, Collares-Pereira MJ, 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshwater Biol 52:1494-1510. DOI: https://doi.org/10.1111/j.1365-2427.2007.01781.x
Menon SV, Kumar A, Middha SK, Paital B, Mathur S, Johnson R, et sl.,2023. Water physicochemical factors and oxidative stress physiology in fish, a review. Front Environ Sci 11:1240813. DOI: https://doi.org/10.3389/fenvs.2023.1240813
Mims MC, Olden JD, 2012. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshwater Biol 58:50-62. DOI: https://doi.org/10.1111/fwb.12037
Mohamed AM, Al-jubouri MOA, 2020. Biological properties of Luciobarbus xanthopterus in the Al-Diwaniya River, middle of Iraq. Int J Fish Aquat Stud 8:92-98.
Morsi A, Mimeche F, Biche M, 2015. Age structure and growth of Algerian barbel Luciobarbus callensis (Valenciennes, 1842) (Cyprinidae) in El-Harrach River (North of Algeria). AACL Bioflux 8:475-484.
Mouludi-Saleh A, Eagderi S, 2019. Length-weight relationship and condition factor of ten fish species (Cyprinidae, Sisoridae, Mugilidae, Cichlidae, Gobiidae and Channidae) from Iranian inland waters. J Wildlife Biodivers 3:12-15.
Muchlisin ZA, Musman M, Siti Azizah MN, 2010. Length-weight relationships and condition factors of two threatened fishes, Rasbora tawarensis and Poropuntius tawarensis, endemic to Lake Laut Tawar, Aceh Province, Indonesia. J Appl Ichthyol 26:949-953. DOI: https://doi.org/10.1111/j.1439-0426.2010.01524.x
Naderi Jolodar M, Roohi A, Ebrahimzadeh M, Seyedeh Ameneh S. 2017. Growth and feeding behaviour of the Tchanari-barbel (Cyprinidae, Luciobarbus capito, Guldenstadt, 1773) in the Shahid Rajaei Reservoir (Sari, Iran). Ecol Evol Biol 2:14-20. DOI: https://doi.org/10.11648/j.eeb.20170201.12
Pauly D, Munro JL, 1984. Once more on the comparison of growth in fish and invertebrates. Fishbyte 2:1-21.
Pedicillo G, Carosi A, Ghetti L, Lorenzoni M, 2010. Population size structure indices and growth standards for Salmo (trutta) trutta Linnaeus, 1758 in Central Italy. Knowl Manag Aquat Ecosyst 399:02. DOI: https://doi.org/10.1051/kmae/2010030
Revenga C, Murray S, Abramovitz J, Hammond A, 1998. Watersheds of the world: ecological value and vulnerability. World Resources Institute, Washington: 200 pp.
Richter TJ, 2007. Development and evaluation of standard weight equations for bridgelip suckers and largescale suckers. N Am J Fish Manage 27:936-939. DOI: https://doi.org/10.1577/M06-087.1
Ricker WE, 1975. Computation and interpretation of biological statistics of fish populations. Department of the Environment, Government of Canada: 382 pp.
Riedel R, Caskey LM, Hurlbert SH, 2007. Length-weight relations and growth rates of dominant fishes of the Salton Sea: implications for predation by fish-eating birds. Lake Reserv Manage 23:528-535. DOI: https://doi.org/10.1080/07438140709354036
RStudio Team, 2023. RStudio: Integrated development environment for R. Available from: http://www.rstudio.com/
Sarkar UK, Pathak AK, Lakra WS, 2008. Conservation of freshwater fish resources of India: new approaches, assessment and challenges. Biodiv Conserv 17:2495-2511. DOI: https://doi.org/10.1007/s10531-008-9396-2
Sarma K, Dey A, Kumar S, Chaudhary BK, Mohanty S, Kumar T, et al., 2020. Effect of salinity on growth, survival and biochemical alterations in the freshwater fish Labeo rohita (Hamilton 1822). Indian J Fish 67. DOI: https://doi.org/10.21077/ijf.2019.67.2.86894-06
Schneider A, Jost A, Coulon C, Silvestre M, Théry S, Ducharne A, 2017. Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophys Res Lett 44:2773-2781. DOI: https://doi.org/10.1002/2016GL071844
Schwartz W, 1973. A. Remane and C. Schlieper, Biology of Brackish Water (2. Edition). VIII und 372 S., 165 Abb., 50 Tab. Stuttgart 1971: Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller). Zeit allgem Mikrobiol 13:633-634. DOI: https://doi.org/10.1002/jobm.3630130724
Sokal RR, Rohlf FJ, 1995. Biometry: the principles and practice of statistics in biological research. New York, W.H. Freeman and Co.: 859 pp.
Then AY, Hoenig JM, Hall NG, Hewitt DA, 2014. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J Mar Sci 72:82-92. DOI: https://doi.org/10.1093/icesjms/fsu136
Türkmen M, Erdoğan O, Yildirim A, Akyurt I, 2002. Reproduction tactics, age and growth of Capoeta capoeta umbla Heckel 1843 from the Aşkale Region of the Karasu River, Turkey. Fish Res 54:317-328. DOI: https://doi.org/10.1016/S0165-7836(01)00266-1
Williams WD, 1999. Salinisation: A major threat to water resources in the arid and semi‐arid regions of the world. Lakes Reserv 4:85-91. DOI: https://doi.org/10.1046/j.1440-1770.1999.00089.x
Winemiller KO, Rose KA, 1992. Patterns of life-history diversification in North american fishes: implications for population regulation. Can J Fish Aquat Sci 49:2196-2218. DOI: https://doi.org/10.1139/f92-242
Zar JH, 1999. Biostatistical analysis. Upper Saddle River, Prentice Hall: 663 pp.
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM, 2009. Mixed Effects Models and Extensions in Ecology with R. New York, Springer: 574 pp. DOI: https://doi.org/10.1007/978-0-387-87458-6

Edited by

Michela Rogora, National Research Council, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy

Supporting Agencies

Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung), Bonn, Germany

How to Cite

Hanfouri, Souhaib, Fayçal Ait Boumallassa, Mohamed Naimi, and Mohamed Znari. 2024. “Plasticity of Life-History Traits in the Draa Barbel <i>Luciobarbus lepineyi</i> (Pellegrin, 1939) (Actinopterygii: Cyprinidae) in the Sub-Saharan Draa Basin, Morocco: Effect of Change in Flow Regime and Salinity”. Journal of Limnology 83 (1). https://doi.org/10.4081/jlimnol.2024.2196.