Revisiting lakes within the Rideau Canal system (Ontario, Canada) to assess the impacts of multiple environmental stressors over the past ~25 years using diatom-based paleolimnology

Submitted: 15 April 2024
Accepted: 11 January 2025
Published: 25 February 2025
Abstract Views: 236
PDF: 20
Supplementary: 11
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Diatom-based paleolimnological studies conducted ~25 years ago on five lakes (i.e., Big Rideau, Upper Rideau, Lower Rideau, Indian and Otter lakes) within the Rideau Canal system (Ontario, Canada) tracked extensive catchment disturbances related to canal construction (starting ca. 1828). Over the past three decades, these lakes have experienced additional environmental stressors including invasive zebra mussels and accelerated climate warming, warranting a paleolimnological re-assessment. We examine diatom compositional changes and visible range spectroscopy-inferred chlorophyll-a (VRS-Chla) trends over the past >200 years from sediment cores collected in 2019-2020 from these same lakes, with the aim of assessing environmental changes registered in these records since the original studies were undertaken ~25-30 years ago. Despite large-scale cultural disturbances, including extensive deforestation and flooding for canal construction, the most ecologically notable diatom changes in all sediment records occurred in the past ~25-30 years, and coincided with increases in VRS-Chla. During this recent period, small cyclotelloid and elongate planktonic diatoms increased in relative abundance, while large-celled Aulacoseira taxa declined. Exceptions to this trend include Upper Rideau Lake, where planktonic diatoms were scarce throughout the core and shifts occurred among benthic taxa, and Big Rideau Lake, which has a large littoral zone, where epiphytic diatoms became prominent in the past decade. These recent diatom changes could not be explained by nutrient enrichment, as measured total phosphorus (TP) concentrations have declined significantly since the 1970s. Increases in small planktonic taxa in some of the lakes also pre-date the ca. 1990 arrival of zebra mussels. We conclude that these recent changes were best explained by regional warming and declining wind speed resulting in new lake physical regimes. Such climate-driven changes are also consistent with the recent development of cyanobacterial blooms in these lakes, despite declining nutrient levels.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Acres International Ltd., 1994. Rideau Canal Water Management Study. Canadian Heritage Parks Service. p. 1-2 and Figure 1.1.
Appleby PG, 2001. Chronostratigraphic techniques in recent sediments, pp. 171-203. In: W.M. Last and J.P. Smol (eds.), Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques. Kluwer, Dordrecht. DOI: https://doi.org/10.1007/0-306-47669-X_9
Balasubramaniam K, Rühland KM, Smol JP, 2023. A diatom-based paleolimnological re-assessment of previously polymictic Lake Opinicon, Ontario (Canada): crossing an ecological threshold in response to warming over the past 25 years. J Paleolimnol 69:37-55. DOI: https://doi.org/10.1007/s10933-022-00261-w
Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S, 2001. Diatoms, pp. 155-202. In: J.P. Smol, H.J. Birks and W.M. Last (eds.), tracking environmental change using lake sediments. Volume 3: Terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht. DOI: https://doi.org/10.1007/0-306-47668-1_8
Behrenfeld MJ, Halsey KH, Boss E, Karp‐Boss L, Milligan AJ, Peers G, 2021. Thoughts on the evolution and ecological niche of diatoms. Ecol Monogr 91:e01457. DOI: https://doi.org/10.1002/ecm.1457
Bennett KD, 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155-170. DOI: https://doi.org/10.1111/j.1469-8137.1996.tb04521.x
Bergström AK, 2010. The use of TN: TP and DIN: TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat Sci 72:277-281. DOI: https://doi.org/10.1007/s00027-010-0132-0
Binford MW, 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253-267. DOI: https://doi.org/10.1007/BF00219461
Birks HJB, 2012. Introduction and overview part II, pp. 101-121. In: H.J.B. Birks, A.F. Lotter, S. Juggins and J.P. Smol (eds)., Tracking environmental change using lake sediments: Data handling and numerical techniques (Vol. 5). Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-007-2745-8_4
Boardman J, Poesen J, 2006. Soil erosion in Europe: Major processes causes and consequences, pp. 479-487. In: J. Boardman and J. Poesen (eds.), Soil erosion in Europe. Wiley, Chichester. DOI: https://doi.org/10.1002/0470859202.ch36
Bona F, La Morgia V, Falasco E, 2012. Predicting river diatom removal after shear stress induced by ice melting. River Res Appl 28:1289-1298. DOI: https://doi.org/10.1002/rra.1517
Bradbury JP, 1988. A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. J Paleolimnol 1:115-131. DOI: https://doi.org/10.1007/BF00196068
Bramburger AJ, Reavie ED, 2016. A comparison of phytoplankton communities of the deep chlorophyll layers and epilimnia of the Laurentian Great Lakes. J Great Lakes Res 42:1016-1025. DOI: https://doi.org/10.1016/j.jglr.2016.07.004
Camburn KE, Charles DF, 2000. Diatoms of low alkalinity Lakes in the Northeastern United States. Philadelphia, Academy of Natural Sciences: p. 152.
Christie CE, Smol JP, 1996. Limnological effects of 19th century canal construction and other disturbances on the trophic state history of Upper Rideau Lake, Ontario. Lake Reserv Manage 12:448-454. DOI: https://doi.org/10.1080/07438149609354284
Crowder A, Conboy MA, 2010. History of QUBS forests: trees at QUBS point in the 1940s and 1970s. Accessed: 15 Sept 2023. Available from: https://opinicon.wordpress.com/2010/07/21/history-of-qubs-forests-trees-at-qubs-point-in-the-1940s-and-1970s/
Cumming BF, Laird KR, Gregory-Eaves I, Simpson KG, Sokal MA, Nordin R, Walker IR, 2015. Tracking past changes in lake-water phosphorus with a 251-lake calibration dataset in British Columbia: tool development and application in a multiproxy assessment of eutrophication and recovery in Osoyoos Lake, a transboundary lake in Western North America. Front Ecol Evol 3:84. DOI: https://doi.org/10.3389/fevo.2015.00084
Cumming BF, Wilson SE, Smol JP, 1993. Paleolimnological potential of chrysophyte cysts and scales and of sponge spicules as indicators of lake salinity. Int J Salt Lake Res 2:87-92. DOI: https://doi.org/10.1007/BF02905055
Douglas MSV, Smol JP, 2010. Freshwater diatoms as indicators of environmental change in the High Arctic, pp. 249-266. In: J.P. Smol and E.F. Stoermer (eds.), The diatoms: applications for the environmental and earth sciences. 2nd Ed. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511763175.014
Duda MP, Sivarajah B, Rühland KM, Paterson AM, Barrow JL, Cheng Y, et al. 2023. Environmental optima for common diatoms from Ontario lakes along gradients of lakewater pH, total phosphorus concentration, and depth. J Paleolimnol 70:131-158. DOI: https://doi.org/10.1007/s10933-023-00288-7
Dusenge ME, Duarte AG, Way D, 2019. Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221:32-49. DOI: https://doi.org/10.1111/nph.15283
Elçi Ş, 2008. Effects of thermal stratification and mixing on reservoir water quality. Limnology 9:135-142. DOI: https://doi.org/10.1007/s10201-008-0240-x
Favot EJ, Rühland KM, DeSellas AM, Ingram R, Paterson AM, Smol JP, 2019. Climate variability promotes unprecedented cyanobacterial blooms in a remote, oligotrophic Ontario lake: evidence from paleolimnology. J Paleolimnol 62:31-52. DOI: https://doi.org/10.1007/s10933-019-00074-4
Favot EJ, Rühland KM, Paterson AM, Smol JP, 2024. Sediment records from Lake Nipissing (ON, Canada) register a lake-wide multi-trophic response to climate change and reveal its possible role for increased cyanobacterial blooms. J Great Lakes Res 50:102268. DOI: https://doi.org/10.1016/j.jglr.2023.102268
Fishman DB, Adlerstein SA, Vanderploeg HA, Fahnenstiel GL, Scavia D, 2010. Phytoplankton community composition of Saginaw Bay, Lake Huron, during the zebra mussel (Dreissena polymorpha) invasion: a multivariate analysis. J Great Lakes Res 36:9-19. DOI: https://doi.org/10.1016/j.jglr.2009.10.004
Forrest F (2001). Reconstructing trophic histories (ca. 200 years) of four lakes within the Rideau Canal System, Ontario. MSc. Thesis. Queen's University, Kingston.
Forrest F, Reavie ED, Smol JP, 2002. Comparing limnological changes associated with 19th century canal construction and other catchment disturbances in four lakes within the Rideau Canal system, Ontario, Canada. J Limnol 61:183-197. DOI: https://doi.org/10.4081/jlimnol.2002.183
Fulton RJ, Richard SH, 1987. Chronology of late Quaternary events in the Ottawa region. Geological Survey of Canada paper 86. Available from: https://publications.gc.ca/collections/collection_2017/rncan-nrcan/M44-86-23-eng.pdf DOI: https://doi.org/10.4095/122379
Futter MN, 2003. Patterns and trends in Southern Ontario lake ice phenology. Environ Monit Assess 88:431-444. DOI: https://doi.org/10.1023/A:1025549913965
Glew JR, 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol 1:235-239. DOI: https://doi.org/10.1007/BF00177769
Glew JR, 1989. A new trigger mechanism for sediment samplers. J Paleolimnol 2:241-243. DOI: https://doi.org/10.1007/BF00195474
Grimm EC, 1991. TILIA v2. 0. b. 4 and TGView v2. 0 (computer software). Springfield, Illinois State Museum, Research and Collections Center.
Hadley KR, Paterson AM, Hall RI, Smol JP, (2013). Effects of multiple stressors on lakes in south-central Ontario: 15 years of change in lakewater chemistry and sedimentary diatom assemblages. Aquat Sci 75:349-360. DOI: https://doi.org/10.1007/s00027-012-0280-5
Hadley KR, Paterson AM, Rühland KM, White H, Wolfe BB, Keller W, et al. 2019. Biological and geochemical changes in shallow lakes of the Hudson Bay lowlands: a response to recent warming. J Paleolimnol 61:313-328. DOI: https://doi.org/10.1007/s10933-018-0061-9
Hall RI, Smol JP, 2010. Diatoms as indicators of lake eutrophication, pp. 122-151. In: J.P. Smol and E.F. Stoermer (eds.), The diatoms: applications for the environmental and earth sciences, 2nd ed. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511763175.008
Harrell FE, 2019. Hmisc: Harrell Miscellaneous, R package version 4.7-0. Accessed: 25 July 2022. Available from: https://cran.r-project.org/web/packages/Hmisc/index.html
Hartig JH, Wallen DG, 1986. The influence of light and temperature on growth and photosynthesis of Fragilaria crotonensis Kitton. J Freshwater Ecol 3:371-382. DOI: https://doi.org/10.1080/02705060.1986.9665128
Hawryshyn J, Rühland KM, Quinlan R, Smol JP, 2012. Long-term water quality changes in a multiple-stressor system: a diatom-based paleolimnological study of Lake Simcoe (Ontario, Canada). Can J Fish Aquat Sci 69:24-40. DOI: https://doi.org/10.1139/f2011-134
Hecky RE, Smith REH, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T, 200). The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61:1285e1293. DOI: https://doi.org/10.1139/f04-065
Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3-13. DOI: https://doi.org/10.1016/j.hal.2008.08.006
Hill MO, 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54:427-432. DOI: https://doi.org/10.2307/1934352
Hossain K, Yadav S, Quaik S, Pant G, Maruthi AY, Ismail N, 2017. Vulnerabilities of macrophytes distribution due to climate change. Theor Appl Climatol 129:1123-1132. DOI: https://doi.org/10.1007/s00704-016-1837-3
Hupfer M, Lewandowski J, 2008. Oxygen controls the phosphorus release from lake sediments–a long‐lasting paradigm in limnology. Int Rev Hydrobiol 93:415-432. DOI: https://doi.org/10.1002/iroh.200711054
Ibelings BW, Vonk M, Los HF, van der Molen DT, Mooij WM, 2003. Fuzzy modeling of cyanobacterial surface waterblooms: Validation with NOAA‐AVHRR satellite images. Ecol Appl 13:1456-1472. DOI: https://doi.org/10.1890/01-5345
Interlandi SJ, Kilham SS, Theriot EC, 1999. Responses of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone Ecosystem. Limnol Oceanogr 44:668-682. DOI: https://doi.org/10.4319/lo.1999.44.3.0668
Janssen CR, Birks HJB, 1994. Recurrent groups of pollen types in time. Rev Palaeobot Palyno 82:165-173. DOI: https://doi.org/10.1016/0034-6667(94)90028-0
Jayarathne PDKD, Kumaragamage D, Indraratne S, Flaten D, Goltz D, 2016. Phosphorus release to floodwater from calcareous surface soils and their corresponding subsurface soils under anaerobic conditions. J Environ Qual 45:1375-1384. DOI: https://doi.org/10.2134/jeq2015.11.0547
Jewson DH, 1992. Size reduction, reproductive strategy and the life cycle of a centric diatom. Philos T Roy Soc B 336:191-213. DOI: https://doi.org/10.1098/rstb.1992.0056
Joehnk KD, Huisman JEF, Sharples J, Sommeijer BEN, Visser PM, Stroom J, 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495-512. DOI: https://doi.org/10.1111/j.1365-2486.2007.01510.x
Juggins S, 2017. Rioja: Analysis of Quaternary Science Data, R package version 0.9-21. Accessed: 25 July 2022. Available from: http://cran.r-project.org/package=rioja
Karst TL, Smol JP, 2000. Paleolimnological evidence of limnetic nutrient concentration equilibrium in a shallow, macrophyte-dominated lake. Aquat Sci 62 20-38. DOI: https://doi.org/10.1007/s000270050073
Kilham SS, 1986. Dynamics of Lake Michigan natural phytoplankton communities in continuous cultures along a Si: P loading gradient. Can J Fish Aquat Sci 43:351-360. DOI: https://doi.org/10.1139/f86-045
Krammer K, Lange-Bertalot H- (1986-1991). Bacillariophyceae. In: H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer (eds.), Süßwasserflora von Mitteleuropa, Volume 2 (1-4). Gustav Fischer Verlag, Stuttgart.
Legget RF, 1986. Rideau waterway (Vol. 3). University of Toronto Press, Toronto: p. 320. DOI: https://doi.org/10.3138/9781442627819
Litchman E, de Tezanos Pinto P, 2024. Ecology of algae and cyanobacteria (phytoplankton), pp. 511-538. In: I.D. Jones and J.P. Smol (eds.), Wetzel's Limnology. London, Academic Press. DOI: https://doi.org/10.1016/B978-0-12-822701-5.00018-5
Lotter AF, Bigler C, (2000). Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125-141. DOI: https://doi.org/10.1007/s000270050002
Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VL, 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biol 58:552-559. DOI: https://doi.org/10.1111/j.1365-2427.2012.02866.x
McGucken W, 1989. The Canadian federal government, cultural eutrophication, and the regulation of detergent phosphates, 1970. Environ Rev 13:155-166. DOI: https://doi.org/10.2307/3984394
McLeod AI, 2016. Package ‘Kendall’, R Package Version 2.2. Accessed: 25 July 2022. Available from: https://cran.r-project.org/web/packages/Kendall/index.html
McVicar TR, Roderick ML, Donohue RJ, Li LT, van Niel TG, Thomas A, et al. 2012. Global review and synthesis of trends in observed terrestrial near‐surface wind speeds: Implications for evaporation. J Hydrol 416:182–205. DOI: https://doi.org/10.1016/j.jhydrol.2011.10.024
Michelutti N, Blais JM, Cumming BF, Paterson AM, Rühland KM, Wolfe AP, Smol JP, 2010. Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? J Paleolimnol 43:205-217. DOI: https://doi.org/10.1007/s10933-009-9325-8
Michelutti N, Smol JP, 2016. Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnol 56:253-265. DOI: https://doi.org/10.1007/s10933-016-9921-3
Morabito G, Ruggiu D, Panzani P, 2001. Trends of phytoplankton characteristics and their communities in pre-and post-liming time in Lake Orta (1984-1998). J Limnol 60:91-100. DOI: https://doi.org/10.4081/jlimnol.2001.91
Naddafi R, Pettersson K, Eklöv P, 2007. The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biol 52:823-842. DOI: https://doi.org/10.1111/j.1365-2427.2007.01732.x
Nelligan C, Jeziorski A, Rühland KM, Paterson AM, Smol J, 2016. Managing lake trout lakes in a warming world: a paleolimnological assessment of nutrients and lake production at three Ontario sites. Lake Reserv Manage 32 315-328. DOI: https://doi.org/10.1080/10402381.2016.1203844
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin RP, O’Hara RB, et al. 2015. Vegan: community ecology package. R package version 2.2-1. Accessed: 25 July 2022. Available from: http://CRAN.Rproject.org/package=vegan
Padisák J, Soróczki-Pintér É, Rezner Z, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton - an experimental study. Hydrobiologia 500:243-257. DOI: https://doi.org/10.1007/978-94-007-1084-9_18
Palmén E, 1958. Vertical circulation and release of kinetic energy during the development of Hurricane Hazel into an extratropical storm. Tellus 10:1-23. DOI: https://doi.org/10.1111/j.2153-3490.1958.tb01982.x
Paterson AM, Rühland KM, Anstey CV, Smol JP, 2017. Climate as a driver of increasing algal production in Lake of the Woods, Ontario, Canada. Lake Reserv Manage 33:403-414. DOI: https://doi.org/10.1080/10402381.2017.1379574
Peierls BL, Hall NS, Paerl H., (2012). Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: a comparison of two coastal plain North Carolina estuaries. Estuar Coast 35:1376-1392. DOI: https://doi.org/10.1007/s12237-012-9547-2
Ptacnik R, Diehl S, Berger S, 2003. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnol Oceanogr 48:1903-1912. DOI: https://doi.org/10.4319/lo.2003.48.5.1903
R Core Team, 2015. R: a language and environment for statistical computing. Vienna (Austria): Foundation for Statistical Computing. Accessed :25 July 2022. Available from: http://www.R-project.org/
Raudzens GK, 1973. The military impact on Canadian canals, 1815–25. Can Hist Rev 54:273-286. DOI: https://doi.org/10.3138/CHR-054-03-02
Reavie ED, Barbiero RP, Allinger LE, Warren GJ, 2014. Phytoplankton trends in the Great Lakes, 2001–2011. J Great Lakes Res 40:618-639. DOI: https://doi.org/10.1016/j.jglr.2014.04.013
Reavie ED, Cai M, 2019. Consideration of species-specific diatom indicators of anthropogenic stress in the Great Lakes. PLoS One 1:e0210927. DOI: https://doi.org/10.1101/514273
Reavie ED, Hall RI, Smol JP, 1995. An expanded weighted-averaging model for inferring past total phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. J Paleolimnol 14 49-67. DOI: https://doi.org/10.1007/BF00682593
Reavie ED, Smol JP, 2001. Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. J Paleolimnol 25:25-42.
Rimet F, Druart JC, Anneville O, (2009). Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974–2007). Ecol Inform 4:99-110. DOI: https://doi.org/10.1016/j.ecoinf.2009.01.006
Round FE, Crawford RM, Mann DG, 1990. Diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge.
Rühland KM, Paterson AM, Hargan K, Jenkin A, Clark BJ, Smol JP, 2010. Reorganization of algal communities in the Lake of the Woods (Ontario, Canada) in response to turn‐of‐the‐century damming and recent warming. Limnol Oceanogr 55:2433-2451. DOI: https://doi.org/10.4319/lo.2010.55.6.2433
Rühland KM, Paterson AM, Keller W, Michelutti N, Smol JP, 2013. Global warming triggers the loss of a key Arctic refugium. Proc Royal Soc B 280:20131887. DOI: https://doi.org/10.1098/rspb.2013.1887
Rühland KM, Paterson AM, Smol JP, 2008. Hemispheric-scale patterns of climate related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740-2754. DOI: https://doi.org/10.1111/j.1365-2486.2008.01670.x
Rühland KM, Paterson AM, Smol JP, 2015. Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1-35. DOI: https://doi.org/10.1007/s10933-015-9837-3
Rühland KM, Smol JP, 2002. Freshwater diatoms from the Canadian Arctic treeline and development of paleolimnological inference models. J Phycol 38:249-264. DOI: https://doi.org/10.1046/j.1529-8817.2002.01129.x
Schelske CL, Peplow A, Brenner M, Spencer CN, 1994. Low-background gamma counting: applications for 210Pb dating of sediments. J Paleolimnol 10:115-128. DOI: https://doi.org/10.1007/BF00682508
Smith VH, Joye SB, Howarth RW, 2006. Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51:351-355. DOI: https://doi.org/10.4319/lo.2006.51.1_part_2.0351
Smith VH, Schindler DW, 2009. Eutrophication science: where do we go from here? Trends Ecol Evol 24:201-207. DOI: https://doi.org/10.1016/j.tree.2008.11.009
Smol JP, 2019. Under the radar: long-term perspectives on ecological changes in lakes. P Roy Soc B-Biol Sci 286:20190834. DOI: https://doi.org/10.1098/rspb.2019.0834
Smol JP, Douglas MS, 2007. From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466-474. DOI: https://doi.org/10.1890/060162
Sorvari S, Korhola A, Thompson R, 2002. Lake diatom response to recent arctic warming in Finnish Lapland. Glob Chang Biol 8:171-181 DOI: https://doi.org/10.1046/j.1365-2486.2002.00463.x
Spaulding SA, Bishop IW, Edlund MB, Lee S, Furey P, Jovanovska E, Potapova M, 2019. Diatoms of North America. Accessed: 15 Jan. 2020. Available from: https://diatoms.org/what-are-diatoms
Stainsby EA, Winter JG, Jarjanazi H, Paterson AM, Evans DO, Young JD, 2011. Changes in the thermal stability of Lake Simcoe from 1980 to 2008. J Great Lakes Res 37:55-62. DOI: https://doi.org/10.1016/j.jglr.2011.04.001
Stoermer EF, Håkansson H, 1984. Stephanodiscus parvus: validation of an enigmatic and widely misconstrued taxon. Nova Hedwigia 39:497-511.
Strayer DL, 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biol 55:152-174. DOI: https://doi.org/10.1111/j.1365-2427.2009.02380.x
Talbot CJ, Bennett EM, Cassell K, Hanes DM, Minor EC, Paerl H, et al. 2018. The impact of flooding on aquatic ecosystem services. Biogeochemistry 141:439-461. DOI: https://doi.org/10.1007/s10533-018-0449-7
ter Braak CJF, Šmilauer P, 2012. CANOCO reference manual and user's guide: Software for ordination, version 5.0. Microcomputer Power, Ithaca, New York.
Vincent LA, Hartwell MM, Wang XL, 2020. A third generation of homogenized temperature for trend analysis and monitoring changes in Canada’s climate. Atmos Ocean 58:173-191. DOI: https://doi.org/10.1080/07055900.2020.1765728
Visser PM, Verspagen JM, Sandrini G, Stal LJ, Matthijs HC, Davis TW, et al. 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145-159. DOI: https://doi.org/10.1016/j.hal.2015.12.006
Walker IR, Reavie ED, Palmer S, Nordin RN, 1993. A palaeoenvironmental assessment of human impact on Wood Lake, Okanagan valley, British Columbia, Canada. Quatern Int 20:51-70. DOI: https://doi.org/10.1016/1040-6182(93)90036-F
Walsby AE, Hayes PK, Boje R, Stal LJ, 1997. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol 136:407-417. DOI: https://doi.org/10.1046/j.1469-8137.1997.00754.x
Warren S, 1997. Hub of the Rideau: a history of South Crosby township. The Local Architectural Conservation Advisory Committee, Township of South Crosby, Leeds County, Ontario.
Watson K, 2000. Rideau Canal Waterway – zebra mussel sightings. Accessed: 5 April 2020. Available from: http://www.rideau-info.com/local/zebra.html
Watson SB, McCauley E, Downing JA, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42:487-495. DOI: https://doi.org/10.4319/lo.1997.42.3.0487
Westover KS, Stone JR, Yost CL, Scott JJ, Cohen AS, Rabideaux NM, et al. 2021. Diatom paleolimnology of late Pliocene Baringo basin (Kenya) paleolakes. Palaeogeogr Palaeocl 570:109382. DOI: https://doi.org/10.1016/j.palaeo.2019.109382
Winder M, Sommer U, 2012. Phytoplankton response to a changing climate. Hydrobiologia 698:5-16. DOI: https://doi.org/10.1007/s10750-012-1149-2
Winter JG, DeSellas AM, Fletcher R, Heintsch L, Morley A, Nakamoto L, Utsumi K, 2011. Algal blooms in Ontario, Canada: increases in reports since 1994. Lake Reserv Manage 27:107-114. DOI: https://doi.org/10.1080/07438141.2011.557765
Wolfe AP, Vinebrooke RD, Michelutti N, Rivard B, Das B, 2006. Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. J Paleolimnol 36:91-100. DOI: https://doi.org/10.1007/s10933-006-0006-6
Woolway RI, Merchant CJ, 2019. Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci 12:271-276. DOI: https://doi.org/10.1038/s41561-019-0322-x
Woolway RI, Sharma S, Smol JP, 2022. Lakes in hot water: the impacts of a changing climate on aquatic ecosystems. BioScience 72:1050-1061. DOI: https://doi.org/10.1093/biosci/biac052
Yu H, Tsuno H, Hidaka T, Jiao C, 2010. Chemical and thermal stratification in lakes. Limnology 11:251-257. DOI: https://doi.org/10.1007/s10201-010-0310-8
Zhu B, Fitzgerald DG, Mayer CM, Rudstam LG, Mills EL, 2006. Alteration of ecosystem function by zebra mussels in Oneida Lake: impacts on submerged macrophytes. Ecosystems 9:1017-1028. DOI: https://doi.org/10.1007/s10021-005-0049-y

Edited by

Andrea Lami, CNR-IRSA Water Research Institute, Verbania-Pallanza, Italy

Supporting Agencies

Natural Sciences and Engineering Research Council of Canada, Rideau Lakes Environmental Foundation

How to Cite

Balasubramaniam, Kapillesh, Kathleen M. Rühland, Andrew M. Paterson, and John P. Smol. 2025. “Revisiting Lakes Within the Rideau Canal System (Ontario, Canada) to Assess the Impacts of Multiple Environmental Stressors over the past ~25 Years Using Diatom-Based Paleolimnology”. Journal of Limnology 84 (February). https://doi.org/10.4081/jlimnol.2025.2192.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.