Neglected dipterans in stream studies

Submitted: 8 April 2024
Accepted: 15 July 2024
Published: 2 August 2024
Abstract Views: 1233
PDF: 271
Supplementary: 56
HTML: 38
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

True flies comprise approximately one-tenth of all animal species on Earth, yet despite their prevalence and ecological significance in freshwater ecosystems, members of the insect order Diptera are frequently neglected in stream studies. This absence or inconsistency regarding Diptera in literature and taxonomic lists may leave readers with a sense of discrepancy. To illustrate this underrepresentation in quantitative ecological investigations, we conducted a targeted literature-based meta-analysis, assessing the average level of Diptera identification and the reported number of families. These findings were compared to data from 639 quantitative samples collected across six European ecoregions (Mediterranean, Alpine, Continental, Balkanic, Pannonian, Boreal) during six, bimonthly repeated sampling campaigns in 2021 and 2022. Our analysis revealed that, compared to other macroinvertebrate groups, Diptera were typically identified at a less detailed level, often only to the family level, thereby failing to fully represent Diptera diversity, especially regarding rare, less abundant families. In our review of literature studies, we identified references to a total of 40 families. Notably, Chironomidae, Ceratopogonidae, and Simuliidae were consistently represented across the majority of studies, whereas nearly half of the families were exclusively mentioned in one or two studies. No significant differences were found in the number of families across continents or various habitat types. In our case studies the number of families was significantly higher than in European stream studies, suggesting that several rare families occasionally completely neglected during sampling, sample sorting or identification. We explored potential connections among Diptera assemblages through correlation and coexistence analyses. Our results highlighted the significant influence of the more frequent Chironomidae, Ceratopogonidae, and Simuliidae on the presence or absence of other families. While correlations between Diptera families were identified, attempts to develop a predictive model for the diversity and occurrence of minor families based on the abundance of major ones proved inconclusive. For future quantitative studies on macroinvertebrate communities, it is essential to recognize, identify and incorporate less abundant Diptera families, even on family level, or in higher taxonomic resolution, if possible,  to enhance understanding and prevent the loss of information concerning this compositionally and functionally uniquely diverse insect group, which represent a significant part of the entire community, and gain a better understanding on their interactions with other aquatic groups.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Aazami J, Maghsodlo H, Mira SS, Valikhani H, 2020. Health evaluation of riverine ecosystems using aquatic macroinvertebrates: a case study of the Mohammad‑Abad River, Iran. Int J Environ Sci Te 17:2637-2644. DOI: https://doi.org/10.1007/s13762-020-02658-4
Alemneh T, Ambelu A, Bahrndorff S, Mereta ST, Pertoldi, Zaitchik BF, 2017. Modeling the impact of highland settlements on ecological disturbance of streams in Choke Mountain Catchment: Macroinvertebrate assemblages and water quality. Ecol Indic 73:452-459. DOI: https://doi.org/10.1016/j.ecolind.2016.10.019
Armitage PD, Cranston PS, Pinder LCV, 1995. The Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London: 572 pp. DOI: https://doi.org/10.1007/978-94-011-0715-0
Barbour M, Gerritsen TJ, Snyder BD, Stribling JB, 1999. Rapid bioassessment protocols for use in streams and wadable rivers: periphyton, benthic macroinvertebrates and fish. United States Environmental Protection Agency, Office of Water, Washington: 202 pp.
Bartošová M, Schenková Polášková V, Bojková J, Šorfová V, Horsák M, 2019. Macroinvertebrate assemblages of the post-mining calcareous stream habitats: Are they similar to those inhabiting the natural calcareous springs? Ecol Eng 136:38-45. DOI: https://doi.org/10.1016/j.ecoleng.2019.05.023
Başören Ö, Kazancı N, 2020. Distribution of aquatic Diptera larvae of Yeşilırmak River (Turkey) and ecological characteristics. Ege J Fish Aquat Sci. 37:397-407. DOI: https://doi.org/10.12714/egejfas.37.4.11
Biecek P, 2018. DALEX: Explainers for Complex Predictive Models in R. J Mach Learn Res 19:1-5.
Breiman L, 2001. Random forests. Mach Learn 45:5-32. DOI: https://doi.org/10.1023/A:1010933404324
Campos RE, 2015. Aquatic Diptera assemblages in four sympatric Eryngium (Apiaceae) phytotelmata in flowering and senescent times. J Nat Hist 50:1-17. DOI: https://doi.org/10.1080/00222933.2015.1091097
Cazorla CG, Campos RE, 2020. Ceratopogonidae (Diptera) communities in a protected area threatened by urbanization. Neotrop Entomol 49:361-368. DOI: https://doi.org/10.1007/s13744-020-00768-9
Coombes KR, Brock G, Abrams ZB, Abruzzo LV, 2019. Polychrome: creating and assessing qualitative palettes with many colors. J Stat Softw 90:1-23. DOI: https://doi.org/10.18637/jss.v090.c01
Cortelezzi A, Paggi AC, Rodríguez M, Rodrigues Capítulo A, 2011. Taxonomic and nontaxonomic responses to ecological changes in an urban lowland stream through the use of Chironomidae (Diptera) larvae. Sci Total Environ 409:1344-1350. DOI: https://doi.org/10.1016/j.scitotenv.2011.01.002
Courtney GW, Cranston PS, 2015. Order Diptera, p. 1043-1058. In: J.H. Thorp and D.C. Rogers eds.), Thorp and Covich’s Freshwater Invertebrates. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-385026-3.00040-1
Courtney GW, Pape T, Skevington JH, Sinclair BJ, 2017. Biodiversity of Diptera, p. 229-278. In: R. Foottit and P. Adler (eds.), Insect biodiversity: science and society. Wiley Blackwell. DOI: https://doi.org/10.1002/9781118945568.ch9
Cuadrado LA, Moncada LI, Pinilla GA, Larrañaga A, Sotelo AI, Adler PH, 2019. Black fly (Diptera: Simuliidae) Assemblages of high Andean rivers respond to environmental and pollution gradients. Environ Entomol 48:815-825. DOI: https://doi.org/10.1093/ee/nvz053
Currie DC, Adler PH, 2008. Global diversity of black flies (Diptera: Simuliidae) in freshwater. Hydrobiologia 595:469-475. DOI: https://doi.org/10.1007/s10750-007-9114-1
Datry T, Allen D, Argelich R, Barquin J, Bonada N, Boulton A, et al., 2021. Securing biodiversity, functional integrity, and ecosystem services in drying river networks (DRYvER). Res Ideas Outcomes 7:e77750.
Debiasi D, Franceschini A, Paoli F, Lencioni V, 2022. How do macroinvertebrate communities respond to declining glacial influence in the Southern Alps? Limnetica 41:121-137. DOI: https://doi.org/10.23818/limn.41.10
de Oliveira SSJr, Ortega JCG, dos Santos Ribas LG, Lopes VG, Bini LM, 2020. Higher taxa are sufficient to represent biodiversity patterns. Ecol Indic 111:105994. DOI: https://doi.org/10.1016/j.ecolind.2019.105994
Dobson M, 2013. Family‐level keys to freshwater fly (Diptera) larvae: A brief review and a key to European families avoiding use of mouthpart characters. Freshwater Rev 6:1-32. DOI: https://doi.org/10.1608/FRJ-6.1.450
Docherty CL, Hannah DM, Riis T, Lund M, Abermann J, Milner AM, 2018. Spatio-temporal dynamics of macroinvertebrate communities in northeast Greenlandic snowmelt streams. Ecohydrology 11:e1982. DOI: https://doi.org/10.1002/eco.1982
Docile TN, Figueiró R, Portela C, Nessimian JL, 2016. Macroinvertebrate diversity loss in urban streams from tropical forests. Environ Monit Assess 188:237. DOI: https://doi.org/10.1007/s10661-016-5237-z
Faasch H, 2015. Identification guide to aquatic and semi-aquatic Diptera larvae. DGL, Dt. Ges. für Limnologie. Hardegsen, Essen: 179 pp.
Feld CK, Kiel K, Lautenschkager M, 2002. The indication of morphological degradation of streams and rivers using Simuliidae. Limnologica 32:273-288. DOI: https://doi.org/10.1016/S0075-9511(02)80033-0
Friberg N, Sandin L, Furse MT, Larsen SE, Clarke RT, Haase P, 2006. Comparison of macroinvertebrate sampling methods in Europe. Hydrobiologia 566:365-378. DOI: https://doi.org/10.1007/s10750-006-0083-6
Fusari LM, Dantas GPS, Pinho LC, 2018. Order Diptera, p. 607-623. In: N. Hamada, J.H. Thorp and D.C. Rogers (eds.), Thorp and Covich’s Freshwater Invertebrates: Keys to Neotropical Hexapoda. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-804223-6.00029-9
Gao X, Niu C, Chen Y, Yin X, 2014. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin. Environ Monit Assess 186:2375-2391. DOI: https://doi.org/10.1007/s10661-013-3545-0
Gerhardt RR, Lawrence JH, 2019. Flies (Diptera), p. 171-190. In: G.R. Mullen and L.A. Durden (eds.), Medical and Veterinary Entomology. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-814043-7.00011-X
Hamilton NE, Ferry M, 2018. “ggtern: Ternary Diagrams Using ggplot2.” J Stat Softw 87:1-17. DOI: https://doi.org/10.18637/jss.v087.c03
Hammer Ø, Harper DAT, Ryan PD, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4:4.
Hastie TJ, Tibshirani R, 1986. Generalized additive models. Stat Sci 1:297-310. DOI: https://doi.org/10.1214/ss/1177013604
Heino J, 2014. Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: Are the inferences transferable among regions? Ecol Indic 36:186-194. DOI: https://doi.org/10.1016/j.ecolind.2013.07.022
Hövemeyer K, 2000. Ecology of Diptera, p. 437-489. In: L. Papp and B. Darvas (eds.), Contribution to a manual of Palaearctic Diptera (with special references of flies of economic importance). Science Herald.
Illéšová D, Halgoš J, Krno I, 2008. Blackfly assemblages (Diptera, Simuliidae) of the Carpathian river: habitat characteristics, longitudinal zonation and eutrophication. Hydrobiologia 598:163-174. DOI: https://doi.org/10.1007/s10750-007-9148-4
Ivković M, Miliša M, Baranov V, Mihaljević Z, 2015. Environmental drivers of biotic traits and phenology patterns of Diptera assemblages in karst springs: The role of canopy uncovered. Limnologica 54:44-57. DOI: https://doi.org/10.1016/j.limno.2015.09.001
JASP Team, 2022. JASP (Version 0.16.4.0). Available from: https://jasp-stats.org/
de Jong Y, Verbeek M, Michelsen V, Bjørn Pde P, Los W, Steeman F, et al., 2014. Fauna Europaea - all European animal species on the web. Biodivers Data J 17:e4034.
Kassambara A, 2023. ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.6.0. Available from: https://CRAN.R-project.org/package=ggpubr
Kitching RL, Bickel DJ, Boulter S, 2005. Guild analyses of dipteran assemblages, a rationale and investigation of seasonality and stratification in selected rainforest faunas, p. 388-415. In: D.K. Yeates and B.M. Wiegmann(eds.), The evolutionary biology of flies. Columbia University Press.
Korte T, 2010. Current and substrate preferences of benthic invertebrates in the rivers of the Hindu Kush-Himalayan region as indicators of hydromorphological degradation. Hydrobiologia 651:77-91. DOI: https://doi.org/10.1007/s10750-010-0291-y
Kriska Gy, 2013. Freshwater invertebrates in Central Europe. A field guide. Springer, Wien: 411 pp. DOI: https://doi.org/10.1007/978-3-7091-1547-3
Kuhn M, 2008. Building Predictive Models in R Using the caret Package. J Stat Soft 28:1-26. DOI: https://doi.org/10.18637/jss.v028.i05
Lautenschläger M, Kiel E, 2005. Assessing morphological degradation in running waters using Blackfly communities (Diptera, Simuliidae): Can habitat quality be predicted from land use? Limnologica 35:262-273. DOI: https://doi.org/10.1016/j.limno.2005.04.003
Lenat DR, 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J N Am Benthol Soc 12:279-290. DOI: https://doi.org/10.2307/1467463
Lencioni V, Adler PH, Courtney GW, 2023. Order Diptera, p. 503-535. In: A. Maasri and J.H. Thorp (eds), Identification and ecology of freshwater arthropods in the Mediterranean Basin. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-821844-0.00001-6
Marchamalo M, Springer M, Acosta R, González-Rodrigo B, Vásquez D, 2018. Responses of aquatic macroinvertebrates to human pressure in a tropical highland volcanic basin: Birrís River, Irazú Volcano (Costa Rica). Hidrobiológica 28:179-190. DOI: https://doi.org/10.24275/uam/izt/dcbi/hidro/2017v28n2/Marchamalo
Marrochi MN, Hunt L, Solis M, Scalise AM, Fanelli SL, Bonetto C, Mugni H, 2021. Land-use impacts on benthic macroinvertebrate assemblages in pampean streams (Argentina). J Environ Manage 279:111608. DOI: https://doi.org/10.1016/j.jenvman.2020.111608
McCreadie JW, Adler PH, 2012. The roles of abiotic factors, dispersal, and species interactions in structuring stream assemblages of black flies (Diptera: Simuliidae). Aquat Biosyst 8:14. DOI: https://doi.org/10.1186/2046-9063-8-14
McLean IFG, 2000. 1.12. Beneficial Diptera and their role in decomposition, p. 491–517. In: L. Papp and B. Darvas (eds.), Contribution to a Manual of Palaearctic Diptera (with special references of flies of economic importance). Volume 1, General and Applied Dipterology. Science Herald.
Miliša M, Stubbington R, Datry T, Cid N, Bonada N, Šumanović M, Milošević D, 2022. Taxon-specific sensitivities to flow intermittence reveal macroinvertebrates as potential bioindicators of intermittent rivers and streams. Sci Total Environ 804:150022. DOI: https://doi.org/10.1016/j.scitotenv.2021.150022
Morinière J, Balke M, Doczkal D, Geiger MF, Hardulak LA, Haszprunar G, et al., 2019. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding-based biomonitoring. Mol Ecol Resour 19:900-928. DOI: https://doi.org/10.1111/1755-0998.13022
Nakano D, Nakamura F, 2008. The significance of meandering channel morphology on the diversity and abundance of macroinvertebrates in a lowland river in Japan. Aquat Conserv 18:780-798. DOI: https://doi.org/10.1002/aqc.885
Narangarvuu D, Hsu C-B, Shieh S-H, Wu F-C, Yang P-S, 2014. Macroinvertebrate assemblage patterns as indicators of water quality in the Xindian watershed, Taiwan. J Asia-Pac Entomol 17:505-513. DOI: https://doi.org/10.1016/j.aspen.2014.04.011
Nilsson AN, 1997. Aquatic insects of North Europe. A taxonomic handbook. Vol. 2. Odonata, Diptera. Apollo Books, Stenstrup: 440 pp.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al., 2020: vegan: Community Ecology Package. R package, version 2.5-7.
Omelková M, Syrovátka V, Křoupalová V, Rádková V, Bojková J, Horsák M, et al., 2013. Dipteran assemblages of spring fens closely follow the gradient of groundwater mineral richness. Can J Fish Aquat Sci 70:689-700. DOI: https://doi.org/10.1139/cjfas-2013-0026
Ono ER, Manoel PS, Melo ALU, Uieda VS, 2020. Effects of riparian vegetation removal on the functional feeding group structure of benthic macroinvertebrate assemblages. Commun Ecol 21:145-157. DOI: https://doi.org/10.1007/s42974-020-00014-7
Oosterbroek P, Theowald B, 1991. Phylogeny of the Tipuloidea based on characters of larvae and pupae (Diptera, Nematocera) with an index to the literature except Tipulidae. Tijdschr Entomol 134:211-267.
Oosterbroek P, 2006. The European families of the Diptera. Identification, diagnosis, biology. KNNV: Utrecht, Netherlands: 204 pp. DOI: https://doi.org/10.1163/9789004278066
Paine GH, And JR, Gaufin AR, Taft RA, 1956. Aquatic Diptera as indicators of pollution in a Midwestern Stream. Ohio J Sci 56:291-304.
Pires MM, Grech MG, Stenert C, Maltchik L, Epele LB, McLean KI, et al., 2021. Does taxonomic and numerical resolution affect the assessment of invertebrate community structure in New World freshwater wetlands? Ecol Indic 125:107437. DOI: https://doi.org/10.1016/j.ecolind.2021.107437
Polášková V, Schenková J, Bílková M, Poláková M, Šorfová V, Polášek M, Schlaghamerský J, Horsák M, 2020. Drivers of small-scale Diptera distribution in aquatic-terrestrial transition zones of spring fens. Wetlands 40:235-247. DOI: https://doi.org/10.1007/s13157-019-01171-w
R Core Team, 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Rosenberg D, 1992. Freshwater biomonitoring and Chironomidae. Neth J Aquat Ecol 26:101-122. DOI: https://doi.org/10.1007/BF02255231
Saether OA, 1979. Chironomid communities as water quality indicators. Ecography 2:65-74. DOI: https://doi.org/10.1111/j.1600-0587.1979.tb00683.x
Sarremejane R, Mykrä H, Bonada N, Aroviita J, Muotka T, 2017. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshwater Biol 62:1073-1082. DOI: https://doi.org/10.1111/fwb.12926
Schmera D, Erős T, Greenwood MT, 2007. Spatial organization of a shredder guild of caddisflies (Trichoptera) in a riffle -Searching for the effect of competition. Limnologica 37:129-136. DOI: https://doi.org/10.1016/j.limno.2006.10.002
Slowikowski K, 2023. ggrepel: automatically position non-overlapping text labels with 'ggplot2'. R package version 0.9.4. Available from: https://CRAN.R-project.org/package=ggrepel
Smith KGV, 1989. An introduction to the immature stages of British flies. Handbooks for the identification of British insects, part 14, vol. 10. Royal Entomological Society of London, London: 280 pp.
Smith KGV, Ferrar P, 2000. Key to families – larvae, p. 201-239. In: L. Papp and B. Darvas (eds.), Contribution to a manual of Palaearctic Diptera (with special references of flies of economic importance). Volume 1, General and Applied Dipterology. Science Herald.
Souto RDMG, Facure KG, Pavanin LA, Jacobucci GB, 2011. Influence of environmental factors on benthic macroinvertebrate communities of urban streams in Vereda habitats, Central Brazil. Acta Limnol Bras 23:293-306. DOI: https://doi.org/10.1590/S2179-975X2012005000008
Sundermann A, Lohse S, Beck LA, Haase P, 2007. Key to the larval stages of aquatic true flies (Diptera), based on the operational taxa list for running waters in Germany. Ann Limnol 43:61-74. DOI: https://doi.org/10.1051/limn/2007028
Szadziewski R, Krzywiński J, Giłka W, 1997. Diptera Ceratopogonidae, biting midges, p. 243-263. In: A.N. Nilsson (ed.) Aquatic insects of North Europe. A taxonomic handbook. Vol. 2. Odonata, Diptera. Apollo Books, Stenstrup.
Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P, 2010. [Invertébrés d'eau douce. Systématique, biologie, écologie].[Book in French]. CNRS Éditions, Paris: 607 pp.
Thakur Y, Grover A, Sinha R, 2022. Differential distribution of macroinvertebrate associated with water quality. World Water Pol 9:84-112. https://doi.org/10.1002/wwp2.12089 DOI: https://doi.org/10.1002/wwp2.12089
Timmermans KR, Peeters W, Tonkes M, 1992. Cadmium, zinc, lead and copper in Chironomus riparius (Meigen) larvae (Diptera, Chironomidae): uptake and effects. Hydrobiologia 241:119-134. DOI: https://doi.org/10.1007/BF00008264
Usher MB, Edwards M, 1984. A dipteran from south of the Antarctic Circle: Belgica antarctica (Chironomidae), with a description of its larva. Biol J Linn Soc 23:19-31. DOI: https://doi.org/10.1111/j.1095-8312.1984.tb00803.x
van den Wollenberg AL, 1977. Redundancy analysis: An alternative for canonical correlation analysis. Psychometrika 42:207-219. DOI: https://doi.org/10.1007/BF02294050
Wagner R, Barták M, Borkent A, Courtney G, Goddeeris B, Haenni J-P, et al., 2008. Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae). Hydrobiologia 595:489-519. DOI: https://doi.org/10.1007/s10750-007-9127-9
Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, et al., 2019. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci Total Environ 678:499–524. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.247
Westheide W, Rieger R, 1996. [Spezielle Zoologie, Teil 1: Einzeller und wirbellose Tiere].[Book in German]. Gustav Fischer, Stuttgart.
Wickham H, 2016. ggplot2: Elegant graphics for data analysis. Available from: https://ggplot2.tidyverse.org DOI: https://doi.org/10.1007/978-3-319-24277-4_9
Wickham H, 2022. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.5.0. Available from: https://CRAN.R-project.org/package=stringr
Wood SN, 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73:3-36. DOI: https://doi.org/10.1111/j.1467-9868.2010.00749.x
Zhang ZQ, 2011. Animal biodiversity: An introduction to higher-level classification and taxonomic richness. Zootaxa 3148:7-12. DOI: https://doi.org/10.11646/zootaxa.3148.1.3

Edited by

Diego Fontaneto, National Research Council, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy

Supporting Agencies

H2020 grant agreement No 869226, Hungarian Research Fund (OTKA FK-135136), Czech Science Foundation (GA23-05268S)
Luka Polović, Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno

Department of Biology, Faculty of Science, University of Zagreb, Croatia

How to Cite

Boóz, Bernadett, Arnold Móra, Márk Ficsór, Petr Pařil, Raúl Acosta, Bea Bartalovics, Thibault Datry, et al. 2024. “Neglected Dipterans in Stream Studies ”. Journal of Limnology 83 (1). https://doi.org/10.4081/jlimnol.2024.2191.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo