Management implications following the reconstruction of the small and shallow Lake Mustijärv (Estonia)

Submitted: 14 March 2024
Accepted: 25 October 2024
Published: 25 November 2024
Abstract Views: 663
PDF: 89
Supplementary: 18
HTML: 12
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Lake Mustijärv was reconstructed by sediment removal following an almost complete siltation. Here we evaluate challenges and opportunities for the management of the lake. We focused on the stream discharging to the lake (i.e., external loading), sediment retention in accumulation basins (i.e., internal processes) as well as the ecosystem-level response to stressors based on biological variables (phyto- and zooplankton, macrophytes, fishes and zoobenthos). Urban and agricultural inputs elevated ammonium and total phosphorus concentrations in the lake, challenging lake reconstruction efforts. Sediment transport highly increased the risk of faster filling of the lake, associated with upstream streambed excavation. Sediments trapped at the accumulation basins release nutrients that enhance eutrophication. We, however, observed a rapid recovery in fish, macrophytes, and zoobenthos, despite the significant disturbances. Lake Mustijärv is in eutrophic condition, reflected by phytoplankton (Pseudanabaena, Closteriopsis dominance) and zooplankton (Keratella, Polyarthra dominance) composition. To improve lake water quality will require controlling external nutrient inputs, underlining the importance of better coordinated activities between the local (lake restoration) and regional (catchment use) scales.  

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

APHA, 2017. Standard Methods for the Examination of Water and Wastewater. 23rd ed. American Public Health Association, Washington DC.
Bormans M, Maršálek B, Jančula D, 2016. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review. Aquat Ecol 50:407–422. DOI: https://doi.org/10.1007/s10452-015-9564-x
Braun-Blanquet J, 1964. [Pflanzensoziologie. Grundzüge der Vegetationskunde].[Book in German]. Springer, Wien: 866 p.
Brouwer E, Bobbink R, Roelofs JG, 2002. Restoration of aquatic macrophyte vegetation in acidified and eutrophied softwater lakes: an overview. Aquat Botany 7:405-431. DOI: https://doi.org/10.1016/S0304-3770(02)00033-5
Chomérat N, Garnier R, Bertrand C, Cazaubon A, 2007. Seasonal succession of cyanoprokaryotes in a hypereutrophic oligo-mesohaline lagoon from the South of France. Estuar Coast Shelf S 72:591–602. DOI: https://doi.org/10.1016/j.ecss.2006.11.008
CEN, 2006. Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). CEN 15204, 2006. European Standard EN 15204:2006.
Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, et al., 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388-2397. DOI: https://doi.org/10.4319/lo.2006.51.5.2388
Estonian Regulation, 2009. [Pinnaveekogumite moodustamise kord ja nende pinnaveekogumite nimestik,mille seisundiklass tuleb määrata, pinnaveekogumite seisundiklassid ja seisundiklassidele vastavad kvaliteedinäitajate väärtused ning seisundiklasside määramise kord].[in Estonian]. Ministry of Environment. Available from: https://www.riigiteataja.ee/akt/122022019062
Fulton TW, 1904. The rate of growth of fishes. Twenty-second Annual Report, Part III. Ann Rep Fish Board Scotland 3:141-241.
Gozlan RE, Pinder AC, Durand S, Bass J, 2003. Could the small size of sunbleak, Leucaspius delineatus (Pisces, Cyprinidae) be an ecological advantage in invading British waterbodies? Folia Zool 52:99-108.
Haberman J, Haldna M, 2014. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. J Limnol 73:828. DOI: https://doi.org/10.4081/jlimnol.2014.828
Haberman J, 2001. Zooplankton, p. 50-68 In: E. Pihu and J. Haberman (eds.), Lake Peipsi: Flora and Fauna. Sulemees Publishers, Tartu. DOI: https://doi.org/10.3176/biol.ecol.2001.3.03
Hilt S, Weyer K van de, Köhler A, Chorus I, 2010. Submerged macrophyte responses to reduced phosphorus concentrations in two peri-urban lakes. Restor Ecol 18:452-461. DOI: https://doi.org/10.1111/j.1526-100X.2009.00577.x
Istvánovics V, Somlyódy L, Clement A, 2002. Cyanobacteria-mediated internal eutrophication in shallow Lake Balaton after load reduction. Water Res 36:3314-3322. DOI: https://doi.org/10.1016/S0043-1354(02)00036-2
Jeffrey ST, Humphrey GF, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pfl 167:191-194. DOI: https://doi.org/10.1016/S0015-3796(17)30778-3
Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, Jensen JP, Branco CW, 2007. Restoration of shallow lakes by nutrient control and biomanipulation - the successful strategy varies with lake size and climate. Hydrobiologia 581:269-285. DOI: https://doi.org/10.1007/s10750-006-0507-3
Karabin A, 1985. Pelagic zooplankton (Rotatoria+Crustacea) variation in the process of lake eutrophication I. Structural and quantitative features. Ekologia Polska 33:567-616.
Kiani M, Raave H, Simojoki A, Tammeorg O, Tammeorg P, 2021. Recycling lake sediment to agriculture: Effects on plant growth, nutrient availability, and leaching. Sci Tot Environ 753:141984. DOI: https://doi.org/10.1016/j.scitotenv.2020.141984
Kiani M, Tammeorg P, Niemistö J, Simojoki A, Tammeorg O, 2020. Internal phosphorus loading in a small shallow Lake: Response after sediment removal. Sci Tot Environ 725:138279. DOI: https://doi.org/10.1016/j.scitotenv.2020.138279
Kiani M, Zrim J, Simojoki A, Tammeorg O, Penttinen P, Markkanen T, Tammeorg P, 2023. Recycling eutrophic lake sediments into grass production: A four-year field experiment on agronomical and environmental implications. Sci Tot Environ 870:161881. DOI: https://doi.org/10.1016/j.scitotenv.2023.161881
Laugaste R, Nõges P, Nõges T, Yastremskij VV, Milius A, Ott I, 2001. Algae, p. 31-49. In: E. Pihu and J. Haberman (eds.), Lake Peipsi: Flora and Fauna. Sulemees Publishers, Tartu.
Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Étrillard C, Levain A, et al., 2019. Eutrophication: a new wine in an old bottle? Sci Tot Environ. 651: 1-11. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.139
Lorenzen CJ, 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343-346. DOI: https://doi.org/10.4319/lo.1967.12.2.0343
Lürling M, Smolders AJP, Douglas G, 2020. Methods for the management of internal phosphorus loading in lakes, p. 77-108. In: A.D. Steinman and B.M. Spears (eds.), Internal phosphorus loading in lakes: causes, case studies, and management. J. Ross Publishing, Fort Lauderdale.
Lürling M, Mucci M, Yasseri S, Hofstra S, Seelen LM, Waajen G, 2024. Combined measures in lake restoration–A powerful approach as exemplified from Lake Groote Melanen (the Netherlands). Water Res 263:122193. DOI: https://doi.org/10.1016/j.watres.2024.122193
Nõges P, Tuvikene L, 2012. Spatial and annual variability of environmental and phytoplankton indicators in Lake Võrtsjärv: implications for water quality monitoring. Eston J Ecol 61:227. DOI: https://doi.org/10.3176/eco.2012.4.01
Nürnberg GK, 1996. Trophic state of clear and colored, soft-and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv Manage 12:432-447. DOI: https://doi.org/10.1080/07438149609354283
Nürnberg GK, 2009. Assessing internal phosphorus load–problems to be solved. Lake Reserv Manage 25:419–432. DOI: https://doi.org/10.1080/00357520903458848
Nürnberg GK, Molot LA, O'Connor E, Jarjanazi H, Winter J, Young J, 2013. Evidence for internal phosphorus loading, hypoxia and effects on phytoplankton in partially polymictic Lake Simcoe, Ontario. J Great Lakes Res 39:259-270. DOI: https://doi.org/10.1016/j.jglr.2013.03.016
Oberholster PJ, Botha AM, Cloete TE, 2007. Ecological implications of artificial mixing and bottom‐sediment removal for a shallow urban lake, Lake Sheldon, Colorado. Lake Reserv Manage 12:73-86. DOI: https://doi.org/10.1111/j.1440-1770.2007.00326.x
Riis T, Kelly-Quinn M, Aguiar FC, Manolaki P, Bruno D, Bejarano MD, et al., 2020. Global overview of ecosystem services provided by riparian vegetation. BioSci 70:501-514. DOI: https://doi.org/10.1093/biosci/biaa041
Ruse LP, Greaves HM, Sayer CD, Axmacher JC, 2018. Consequences of pond management for chironomid assemblages and diversity in English farmland ponds. J Limnol 77:1789. DOI: https://doi.org/10.4081/jlimnol.2018.1789
Saether OA, 1979. Chironomid communities as water quality indicators. Holarctic Ecol 2:65-74. DOI: https://doi.org/10.1111/j.1600-0587.1979.tb00683.x
Smith L, Watzin MC, Druschel G, 2011. Relating sediment phosphorus mobility to seasonal and diel redox fluctuations at the sediment-water interface in a eutrophic freshwater lake. Limnol Oceanogr 56:2251-2264. DOI: https://doi.org/10.4319/lo.2011.56.6.2251
Søndergaard M, Bjerring R, Jeppesen E, 2013. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 710:95-107. DOI: https://doi.org/10.1007/s10750-012-1091-3
Søndergaard M, Nielsen A, Johansson LS, Davidson TA, 2023. Temporarily summer-stratified lakes are common: profile data from 436 lakes in lowland Denmark. Inland Waters 13:153-166. DOI: https://doi.org/10.1080/20442041.2023.2203060
Søndergaard M, Nielsen A, Skov C, Baktoft H, Reitzel K, Kragh, Davidson T, 2022. Temporarily and frequently occurring summer stratification and its effects on nutrient dynamics, greenhouse gas emission and fish habitat use: case study from Lake Ormstrup (Denmark). Hydrobiologia 850:65-79. DOI: https://doi.org/10.1007/s10750-022-05039-9
Soylu NE, Gonulol A, 2010. Seasonal succession and diversity of phytoplankton in a eutrophic lagoon (Liman lake). J Environ Biol 31:629-636.
Steele MK, McDowell WH, Aitkenhead-Peterson JA, 2010. Chemistry of urban, suburban, and rural surface waters. Urban Ecosyst Ecol 55:297-339. DOI: https://doi.org/10.2134/agronmonogr55.c15
Steinman AD, Spears BM, 2020. What is internal phosphorus loading and why does it occur? In: A.D. Steinman and B.M. Spears (eds). Internal Phosphorus Loading: Causes, case studies, and management. J. Ross Publishing, Fort Lauderdale: pp. 3-13.
Stewart JA, Wetzel RG, 1986. Cryptophytes and other microflagellates as couplers in planktonic community dynamics. Arch Hydrobiol 106:1-19. DOI: https://doi.org/10.1127/archiv-hydrobiol/106/1986/1
Tammeorg O, Nürnberg G, Horppila J, Haldna M, Niemistö J, 2020. Redox-related release of phosphorus from sediments in large and shallow Lake Peipsi: Evidence from sediment studies and long-term monitoring data. J Great Lakes Res 46:1595-1603. DOI: https://doi.org/10.1016/j.jglr.2020.08.023
Tammeorg O, Chorus I, Spears B, Nõges P, Nürnberg GK, Tammeorg P, et al., 2023. Sustainable lake restoration: From challenges to solutions. WIREs Water 11:e1689. DOI: https://doi.org/10.1002/wat2.1689
Timm T, Kangur K, Timm H, Timm T, 1996. Macrozoobenthos of Lake Peipsi-Pihkva: taxonomical composition, abundance, biomass, and their relations to some ecological parameters. Hydrobiologia 338:139-154. DOI: https://doi.org/10.1007/BF00031718
Van Hulle SW, Vandeweyer HJ, Meesschaert BD, Vanrolleghem PA, Dejans P, Dumoulin A, 2010. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162:1–20. DOI: https://doi.org/10.1016/j.cej.2010.05.037
Verschoor MJ, Powe CR, McQuay E, Schiff SL, Venkiteswaran JJ, Li J, Molot LA, 2017. Internal iron loading and warm temperatures are preconditions for cyanobacterial dominance in embayments along Georgian Bay, Great Lakes. Can J Fish Aquat Sci 74:1439-1453. DOI: https://doi.org/10.1139/cjfas-2016-0377
Vijverberg J, Boersm M, 1997. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia 360:233-242. DOI: https://doi.org/10.1007/978-94-011-4964-8_26
Wang J, Wang S, Jin X, Zhu S, Wu F, 2008. Ammonium release characteristics of the sediments from the shallow lakes in the middle and lower reaches of Yangtze River region, China. Environ Geol 55:37-45. DOI: https://doi.org/10.1007/s00254-007-0962-9
Yağci MA, 2016. Variations in the Zooplankton Species Structure of Eutrophic Lakes in Turkey. Lake Sci Climate Change 24: 81–102. DOI: https://doi.org/10.5772/63749
Yao F, Minear JT, Rajagopalan B, Wang C, Yang K, Livneh B, 2023. Estimating reservoir sedimentation rates and storage capacity losses using high‐resolution sentinel‐2 satellite and water level data. Geophys Res Lett 50:e2023GL103524. DOI: https://doi.org/10.1029/2023GL103524
Yu F, He S, Liu Y, Yao X, Sun Q, 2019. Community structure of Rotifera and eutrophication evaluation of Nansha Mangal-Wetland Park in Guangzhou City. Earth Environ Sci 310:052013. DOI: https://doi.org/10.1088/1755-1315/310/5/052013
Zhang Y, Hu Y, Peng Z, Hu W, Zhu J, 2022. Environmental mechanism of capturing nutrient-rich particles by the lake bottom trap in a large, shallow lake. Chemosphere 307:136081. DOI: https://doi.org/10.1016/j.chemosphere.2022.136081

Supporting Agencies

Center for Environmental Investments SA, Päijät-Häme Regional Fund of Finnish Cultural Foundation, Maa- ja vesiteknikan tuki ry, PRG1167 of Estonian Research Council
Olga Tammeorg, Department of Agricultural Sciences, University of Helsinki

Chair of Hydrobiology and Fishery, Estonian University of Life Sciences, Tartu, Estonia

How to Cite

Tammeorg, Olga, Mina Kiani, Peeter Nõges, Kätlin Blank, Tõnu Feldmann, Juta Haberman, Reet Laugaste, Siim Seller, Arvo Tuvikene, and Priit Tammeorg. 2024. “Management Implications Following the Reconstruction of the Small and Shallow Lake Mustijärv (Estonia)”. Journal of Limnology 83 (1). https://doi.org/10.4081/jlimnol.2024.2188.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.