Polarised light pollution on river water surfaces caused by artificial light at night from illuminated bridges and surroundings

Submitted: 29 November 2023
Accepted: 8 April 2024
Published: 22 May 2024
Abstract Views: 327
PDF: 135
Supplementary: 10
HTML: 3
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Bridge illumination gave rise to night-time illuminated paths across aquatic systems. However, if bridge artificial light at night (ALAN) reach waterbodies, it can result in polarised light pollution (PLP), which might alter the optical conditions of a river by night and potentially interfere with moonlight polarisation signals reflected off the water’s surface. It is a night-time phenomenon that can detrimentally change the behaviour of organisms sensitive to horizontally reflected polarised moonlight, a navigational cue and signal known to be used by flying water-seeking insects to detect suitable aquatic habitats to reproduce and lay eggs. In this study, we quantify the reflection of ALAN-induced polarisation patterns at the water’s surface near seven illuminated bridges crossing the river Spree in Berlin. The photometric data shows that bridge illumination induces PLP, which reflects from the water’s surface when measured at specific locations in space considered as potential flying paths for polarotactic aquatic insects. ALAN-induced polarisation findings at illuminated bridges suggest that PLP is a pollutant that illuminates aquatic areas. It requires better research as it can potentially affect polarimetric navigation in flying aquatic insects. As the extent of light pollution reaches riverine systems and aquatic habitats, the potential effects of PLP on freshwaters need the proper development of sustainable lighting solutions that can aid in preserving riverine nightscapes.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Bernáth B, Gál J, Horváth G, 2004. Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations. J. Exp. Biol. 207:755-765. DOI: https://doi.org/10.1242/jeb.00810
Bernáth B, Szedenics G, Molná G, Kriska G, Horváth G, 2001. Visual ecological impact of “shiny black anthropogenic products” on aquatic insects: oil reservoirs and plastic sheets as polarised traps for insects associated with water. Arch. Nat. Conserv. Landsc. Res. 40:89-109.
Bernáth B, Szedenics G, Wildermuth H, Horváth G, 2002. How can dragonflies discern bright and dark waters from a distance? The degree of polarisation of reflected light as a possible cue for dragonfly habitat selection. Freshwater Biol. 47:1707-1719. DOI: https://doi.org/10.1046/j.1365-2427.2002.00931.x
Black TV, Robertson BA, 2020. How to disguise evolutionary traps created by solar panels. J. Insect Conserv. 24:241-247. DOI: https://doi.org/10.1007/s10841-019-00191-5
Brines ML, Gould JL, 1982. Skylight polarisation patterns and animal orientation. J. Exp. Biol. 96:69-91. DOI: https://doi.org/10.1242/jeb.96.1.69
Cronin TW, 2018. A different view: sensory drive in the polarised-light realm. Curr. Zool. 64:513-523. DOI: https://doi.org/10.1093/cz/zoy040
Egrí Á, Pereszlényi Á, Farkas A, Horváth G, Penksza K, Kriska G, 2017. How can asphalt roads extend the range of in situ polarised light pollution? A complex ecological trap of Ephemera danica and a possible remedy. J. Insect Behav. 30:374-384. DOI: https://doi.org/10.1007/s10905-017-9623-3
Egrí Á, Száz D, Pereszlényi Á, Bernáth B, Kriska G, 2019. Quantifying the polarised light pollution of an asphalt road: an ecological trap for the stonefly, Perla abdominalis (Guérin-Méneville, 1838) (Plecoptera: Perlidae). Aquat. Insects. 40:257-269. DOI: https://doi.org/10.1080/01650424.2019.1601228
Falchi F, Cinzano P, Duriscoe D, Kyba CC, Elvidge CD, Baugh K, et al., 2016. The new world atlas of artificial night sky brightness. Sci. Adv. 2:e1600377. DOI: https://doi.org/10.1126/sciadv.1600377
Fraleigh DC, Heitmann JB, Robertson BA, 2021. Ultraviolet polarised light pollution and evolutionary traps for aquatic insects. Anim. Behav. 180:239-247. DOI: https://doi.org/10.1016/j.anbehav.2021.08.006
Foster JJ, Temple SE, How MJ, Daly IM, Sharkey CR, Wilby D, Roberts NW, 2018. Polarisation vision: overcoming challenges of working with a property of light we barely see. Sci. Nat. 105:1-26. DOI: https://doi.org/10.1007/s00114-018-1551-3
Gál J, Horváth G, Barta A, Wehner R, 2001. Polarisation of the moonlit clear night sky measured by full‐sky imaging polarimetry at full Moon: Comparison of the polarisation of moonlit and sunlit skies. J. Geophys. Res.-Atmos. 106:22647-22653. DOI: https://doi.org/10.1029/2000JD000085
Goldsmith TH, 1975. The polarisation sensitivity - dichroic absorption paradox in arthropod photoreceptors, p. 392-409. In: A.W. Snyder and R. Menzel (eds.), Photoreceptor optics. Springer, Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-80934-7_23
Haidinger W, 1844. [Über das direkte Erkennen des polarisierten Lichts und der Lage der Polarisationsebene].[Article in German]. Ann. Phys. 139: 29-39. DOI: https://doi.org/10.1002/andp.18441390903
Haynes KJ, Robertson BA, 2021. A transdisciplinary research agenda for understanding insect responses to ecological light pollution informed by evolutionary trap theory. Curr. Opin. Insect Sci. 45:91-96. DOI: https://doi.org/10.1016/j.cois.2021.02.004
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, et al., 2021. 11 pressing research questions on how light pollution affects biodiversity. Front. Ecol. Evol. 9:767177. DOI: https://doi.org/10.3389/fevo.2021.767177
Hölker F, Jechow A, Schroer S, Tockner K, Gessner MO, 2023. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos. T. Roy. Soc. B 378:20220360. DOI: https://doi.org/10.1098/rstb.2022.0360
Horváth G, 2014. Polarised light and polarisation vision in animal sciences. vol. 2. Springer, Berlin. DOI: https://doi.org/10.1007/978-3-642-54718-8
Horváth G, Csabai Z, 2014. Polarization vision of aquatic insects. In: Horváth G. (ed.), Polarized light and polarization vision in animal sciences. Springer, Berlin Heidelberg. pp. 113-145. DOI: https://doi.org/10.1007/978-3-642-54718-8_5
Horváth G, Kriska G, Malik P, Robertson B, 2009. Polarised light pollution: a new kind of ecological photopollution. Front. Ecol. Environ. 7:317-325. DOI: https://doi.org/10.1890/080129
Horváth G, Kriska G, Robertson B, 2014. Anthropogenic polarisation and polarised light pollution inducing polarised ecological traps. Polarised Light Polariz. Vis. Anim. Sci. 2:443-513. DOI: https://doi.org/10.1007/978-3-642-54718-8_20
Horváth G, Móra A, Bernáth B, Kriska G, 2011. Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarised light. Physiol. Behav. 104:1010-1015. DOI: https://doi.org/10.1016/j.physbeh.2011.06.022
Horváth G, Varjú D, 1997. Polarisation pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. J. Exp. Biol. 200:1155-1163. DOI: https://doi.org/10.1242/jeb.200.7.1155
Jechow A, Hölker F, 2019. How dark is a river? Artificial light at night in aquatic systems and the need for comprehensive night‐time light measurements. WIREs Water. 6:e1388. DOI: https://doi.org/10.1002/wat2.1388
Jechow A, Kyba CC, Hölker F, 2019. Beyond all-sky: assessing ecological light pollution using multi-spectral full-sphere fisheye lens imaging. J. Imaging 5:46. DOI: https://doi.org/10.3390/jimaging5040046
Jechow A, Kyba CCM, Hölker F, 2020. Mapping the brightness and color of urban to rural skyglow with all-sky photometry. J. Quant. Spectrosc. Radiat. Transf. 250:106988. DOI: https://doi.org/10.1016/j.jqsrt.2020.106988
Köhler J, Gelbrecht J, Pusch M, 2002. [Die Spree: Zustand, Probleme, Entwicklungsmöglichkeiten].[Book in German]. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart; 384 pp.
Kriska G, Bernáth B, Farkas R, Horváth G, 2009. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J. Insect Physiol. 55: 1167-1173. DOI: https://doi.org/10.1016/j.jinsphys.2009.08.013
Kriska G, Csabai Z, Boda P, Malik P, Horvath G, 2006. Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarisation signals. P. Roy. Soc. B-Biol. Sci. 273:1667-1671. DOI: https://doi.org/10.1098/rspb.2006.3500
Kriska G, Horváth G, Andrikovics S, 1998. Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarised light reflected from asphalt attracts Ephemeroptera. J. Exp. Biol. 201:2273-2286. DOI: https://doi.org/10.1242/jeb.201.15.2273
Kriska G, Malik P, Szivák I, Horváth G, 2008. Glass buildings on river banks as “polarised light traps” for mass-swarming polarotactic caddis flies. Naturwissenschaften 95:461-467. DOI: https://doi.org/10.1007/s00114-008-0345-4
Kyba CC, Ruht T, Fischer J, Hölker F, 2011. Lunar skylight polarisation signal polluted by urban lighting. J. Geophys. Res.-Atmos. 116:D24106. DOI: https://doi.org/10.1029/2011JD016698
Kyba CC, Kuester T, Sánchez de Miguel A, Baugh K, Jechow A, Hölker F, et al., 2017. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3:e170152. DOI: https://doi.org/10.1126/sciadv.1701528
Labhart T, 1988. Polarisation-opponent interneurons in the insect visual system. Nature 331:435-437. DOI: https://doi.org/10.1038/331435a0
Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, 2008. Broza M Reflected polarisation guides chironomid females to oviposition sites. J. Exp. Biol. 211:3536-3543. DOI: https://doi.org/10.1242/jeb.022277
Lerner A, Sapir N, Erlick C, Meltser N, Broza M, Shashar N, 2011. Habitat availability mediates chironomid density-dependent oviposition. Oecologia 165905-914. DOI: https://doi.org/10.1007/s00442-010-1893-9
Longcore T, Rich C, 2004. Ecological light pollution. Front. Ecol. Environ. 2:191-198. DOI: https://doi.org/10.1890/1540-9295(2004)002[0191:ELP]2.0.CO;2
Malik P, Hegedüs R, Kriska G, Horváth G, 2008. Imaging polarimetry of glass buildings: why do vertical glass surfaces attract polarotactic insects? Appl. Opt. 47:4361-4374. DOI: https://doi.org/10.1364/AO.47.004361
Muheim R, 2011. Behavioural and physiological mechanisms of polarised light sensitivity in birds. Philos. T. Roy. Soc. B 366:763-771. DOI: https://doi.org/10.1098/rstb.2010.0196
Nilsson DE, Warrant EJ, 1999. Visual discrimination: Seeing the third quality of light. Curr. Biol. 9:R535-R537. DOI: https://doi.org/10.1016/S0960-9822(99)80330-3
Owens AC, Cochard P, Durrant J, Farnworth B, Perkin EK, Seymoure B, 2020. Light pollution is a driver of insect declines. Biol. Conserv. 241:108259. DOI: https://doi.org/10.1016/j.biocon.2019.108259
Pérez Vega C, Zielinska-Dabkowska KM, Schroer S, Jechow A, Hölker F, 2022. A systematic review for establishing relevant environmental parameters for urban lighting: Translating research into practice. Sustainability 14:1107. DOI: https://doi.org/10.3390/su14031107
Pérez Vega C, Jechow A, Campbell JA, Zielinska-Dabkowska KM, Hölker F, 2024.Light pollution from illuminated bridges as a potential barrier for migrating fish - Linking measurements with a proposal for a conceptual model. Basic Appl. Ecol. 74:1-12. DOI: https://doi.org/10.1016/j.baae.2023.11.001
Perkin EK, Hölker F, Richardson JS, Sadler JP, Wolter C, Tockner K, 2011. The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives. Ecosphere 2:1-16. DOI: https://doi.org/10.1890/ES11-00241.1
Perkin EK, Hölker F, Tockner K, 2014. The effects of artificial lighting on adult aquatic and terrestrial insects. Freshwater Biol. 59:368-377. DOI: https://doi.org/10.1111/fwb.12270
Robertson BA, Chalfoun AD, 2016. Evolutionary traps as keys to understanding behavioral maladaptation. Curr. Opin. Behav. Sci. 12:12-17. DOI: https://doi.org/10.1016/j.cobeha.2016.08.007
Schwind R, 1983. A polarisation-sensitive response of the flying water bug Notonecta glauca to UV light. J. Comp. Physiol. 150:87-91. DOI: https://doi.org/10.1007/BF00605291
Schwind R, 1989. A variety of insects are attracted to water by reflected polarised light. Naturwissenschaften 76:377-378. DOI: https://doi.org/10.1007/BF00366211
Schwind R, 1991. Polarisation vision in water insects and insects living on a moist substrate. J. Comp. Physiol. A 169:531-540. DOI: https://doi.org/10.1007/BF00193544
Schwind R, 1995. Spectral regions in which aquatic insects see reflected polarised light. J. Comp. Physiol. A 177:439-448. DOI: https://doi.org/10.1007/BF00187480
SDG14, 2015. Life below water. Accessed: October 10, 2023. Available online: https://www.globalgoals.org/goals/14-life-below-water/
Shashar N, Cronin TW, Johnson G, Wolff LB, 1995. Portable imaging polarised light analyzer. Proc. 9th Meet. on Optical Engineering. SPIE 2426:28-35.
Száz D, Horvath G, Barta A, Robertson BA, Farkas A, Egri A, et al., 2015. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarised and unpolarized light pollution. PloS One 10:e0121194. DOI: https://doi.org/10.1371/journal.pone.0121194
Száz D, Takács P, Bernáth B, Kriska G, Barta A, Pomozi I, Horváth G, 2023. Drone-based imaging polarimetry of dark lake patches from the viewpoint of flying polarotactic insects with ecological implication. Remote Sens 15:2797. DOI: https://doi.org/10.3390/rs15112797
Turcsányi I, Szentkirályi F, Bernáth B, Kádár F, 2009. Flight of mayflies towards horizontally polarised and unpolarised light. Aquat. Insects 31:301-310. DOI: https://doi.org/10.1080/01650420902812222
Waterman TH, 1954. Polarisation patterns in submarine illumination. Science 120:927-932. DOI: https://doi.org/10.1126/science.120.3127.927
Wehner R, 1989. The hymenopteran skylight compass: matched filtering and parallel coding. J. Exp. Biol. 146:63-85. DOI: https://doi.org/10.1242/jeb.146.1.63
Wehner R, 2001. Polarisation vision-a uniform sensory capacity? J. Exp. Biol. 204:2589-2596. DOI: https://doi.org/10.1242/jeb.204.14.2589
Wildermuth H, Horvéth G, 2005. Visual deception of a male Libellula depressa by the shiny surface of a parked car (Odonata: Libellulidae). Int. J. Odonatol. 8:97-105. DOI: https://doi.org/10.1080/13887890.2005.9748246

Edited by

Diego Fontaneto, National Research Council, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy

Supporting Agencies

Hochschule Wismar, University of Applied Sciences: Technology, Business and Design , European Erasmus Sector Skill Alliance Program , Bundesamt für Naturschutz, Gdansk University of Technology

How to Cite

Pérez Vega, Catherine, Franz Hölker, Karolina M. Zielinska-Dabkowska, and Andreas Jechow. 2024. “Polarised Light Pollution on River Water Surfaces Caused by Artificial Light at Night from Illuminated Bridges and Surroundings”. Journal of Limnology 83 (1). https://doi.org/10.4081/jlimnol.2024.2173.