Multidecadal analysis of Lake Garda water balance

Image by <a href="https://pixabay.com/users/stux-12364/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=270916">Stefan Schweihofer</a> from <a href="https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=270916">Pixabay</a>
Submitted: 16 May 2023
Accepted: 30 September 2023
Published: 20 November 2023
Abstract Views: 1565
PDF: 703
Supplementary: 27
HTML: 22
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Lake Garda, the largest in Italy, is a major source of water supply inserted in a trans-regional area, sustaining an ever-increasing variety of water interests since the XX century. We perform a multidecadal (1928-2020) water balance, estimating the long-term evolution of the input and output components under changing anthropogenic and climatic stressors. First, we present our hydrometeorological database, assembled through a consistent effort of collection and digitization of data from different sources. Then, we analyse the annual water balance, assessing the magnitude of the residual term, i.e. the unknown term that embeds uncertainties and potential sources of error, closing the water balance equation. Uncertainties are investigated by applying a multi-method analysis for over-lake evaporation and basin evapotranspiration. Land use evolution, contributions from the Mount Baldo area as well as the potential role of groundwater fluxes are additionally analysed. Eventually, we compute a sensitivity analysis to delineate the role of each component on the lake’s level and outflow variations. The long-term analysis allows for distinguishing some trends in the input and output components of the water balance. Differences emerge in the periods before and after the lake’s impoundment (1951), and some effects of climate modifications appear in the last decades. Precipitation over the basin has a major influence on the water availability within the basin, a result confirmed by the sensitivity analysis. The entity of the residual term, which represents the unaccounted contributions, calls into question the role of the groundwater fluxes and the time scale of the analysis. The multi-method analysis highlights the dependency of the different lake evaporation and basin evapotranspiration methods on the amount of data available.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, et al., 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop evapotranspiration-guidelines for computing crop water requirements - FAO irrigation and drainage paper 56. FAO, Rome. Available from: https://www.fao.org/3/X0490E/x0490e00.htm
Amadori M, Morini G, Piccolroaz S, Toffolon M, 2020. Involving citizens in hydrodynamic research: A combined local knowledge-numerical experiment on Lake Garda, Italy. Sci Total Environ 722:137720. DOI: https://doi.org/10.1016/j.scitotenv.2020.137720
Balistrocchi M, Tomirotti M, Muraca A, Ranzi R, 2021. Hydroclimatic Variability and Land Cover Transformations in the Central Italian Alps. Water 13:963. DOI: https://doi.org/10.3390/w13070963
Baracchini T, Wüest A, Bouffard D, 2020. Meteolakes: An operational online three-dimensional forecasting platform for lake hydrodynamics. Water Res 172:115529. DOI: https://doi.org/10.1016/j.watres.2020.115529
Baroni C, Carton A, 1990 [Variazioni oloceniche della Vedretta della Lobbia (Gruppo dell’Adamello Alpi Centrali)].[Article in Italian]. Geogr Fis Din Quat 13: 05-119.
Berbenni P, Bertelli P, Occhi R, Bottazzi S, 1992. [Usi plurimi delle acque del Garda. La disciplina dei livelli del lago].[Book in Italian]. Verona: Consorzio Universitario di Economia Industriale e Manageriale.
Birhanu D, Kim H, Jang C, Park S, 2018. Does the complexity of evapotranspiration and hydrological models enhance robustness? Sustainability 10:2837. DOI: https://doi.org/10.3390/su10082837
Brugnara Y, Brunetti M, Maugeri M, Nanni T, Simolo C, 2012. High-resolution analysis of daily precipitation trends in the central alps over the last century. Int J Climatol 32:1406-1422. DOI: https://doi.org/10.1002/joc.2363
Brugnara Y, Maugeri M, 2019. Daily precipitation variability in the southern alps since the late 19th century. Int J Climatol 39:3492-3504. DOI: https://doi.org/10.1002/joc.6034
Budyko MI, 1958. The heat balance of the earth’s surface. Washington: US Dept. of Commerce, Weather Bureau: 259 pp.
Budyko MI, 1974. Climate and life. New York, Academic Press: 508 pp.
Calmanti S. Motta L, Turco M, Provenzale A, 2007. Impact of climate variability on Alpine glaciers in northwestern Italy. Int J Climatol 27:2041-2053. DOI: https://doi.org/10.1002/joc.1500
Carolli M, Gelmini F, Pellegrini S, Deriu M, Zolezzi G, 2021. Prioritizing reaches for restoration in a regulated alpine river: Locally driven versus hydro-morphologically based actions. River Res Appl 37:17-32. DOI: https://doi.org/10.1002/rra.3737
Chebud YA, Melesse AM, 2009. Modelling lake stage and water balance of Lake Tana, Ethiopia. Hydrol Process 23:3534-3544. DOI: https://doi.org/10.1002/hyp.7416
Cui J, Tian L, Gibson JJ, 2018. When to conduct an isotopic survey for lake water balance evaluation in highly seasonal climates. Hydrol Process 32:379-387. DOI: https://doi.org/10.1002/hyp.11420
Dalton J, 1802. Experimental essays on the constitution of mixes gases: on the force of steam or vapor from water or other liquids in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat. Mem Lit Philos Soc Manchester 5:536-602.
De Marchi G, 1919. [Il regime idraulico del Lago di Garda].[in Italian]. Venezia: Ufficio Idrografico del R. Magistrato alle Acque.
De Marchi G, 1920. [Sul regime idraulico dei laghi ed in particolare di quello del Garda].[Article in Italian]. Giornale Genio Civile 43.
Do HX, Smith JP, Fry LM, Gronewold AD, 2020. Seventy-year long record of monthly water balance estimates for earth’s largest lake system. Sci Data 7:1-12. DOI: https://doi.org/10.1038/s41597-020-00613-z
Efstratiadis A, Koutsoyiannis D, 2010. One decade of multiobjective calibration approaches in hydrological modelling: a review. Hydrol Sci J 55:58-78. DOI: https://doi.org/10.1080/02626660903526292
Elsawwaf M, Willems P, Feyen J, 2010. Assessment of the sensitivity and prediction uncertainty of evaporation models applied to Nasser Lake, Egypt. J Hydrol 395:10-22. DOI: https://doi.org/10.1016/j.jhydrol.2010.10.002
European Centre for Medium-Range Weather Forecasts, 2014. Era-20c project (ECMWF atmospheric reanalysis of the 20thcentury) (Updated daily). Available from: https://rda.ucar.edu/datasets/ds626.0/
Fink G, Schmid M, Wahl B, Wolf T, Wüest A, 2014. Heat flux modifications related to climate-induced warming of large European lakes. Water Resour Res 50:2072-2085. DOI: https://doi.org/10.1002/2013WR014448
Fowe T, Karambiri H, Paturel JE, Poussin JC, Cecchi P, 2015. Water balance of small reservoirs in the Volta Basin: A case study of Boura reservoir in Burkina Faso. Agric Water Manag 152:99-109. DOI: https://doi.org/10.1016/j.agwat.2015.01.006
Fuchs R, Herold M, Verburg PH, Clevers JG, 2013. A highresolution and harmonized model approach for reconstructing and analyzing historic land changes in Europe. Biogeosciences 10:1543-1559. DOI: https://doi.org/10.5194/bg-10-1543-2013
Fuchs R, Herold M, Verburg PH, Clevers JG, Eberle J, 2015. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biol 21:299-313. DOI: https://doi.org/10.1111/gcb.12714
Gibson J, Edwards T, 2002. Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in Northern Canada. Global Biogeochem Cycles 16:10-1-10-14. DOI: https://doi.org/10.1029/2001GB001839
Gibson J, Prowse T, Peters D, 2006. Hydroclimatic controls on water balance and water level variability in Great Slave Lake. Hydrological Processes 20:4155-4172. DOI: https://doi.org/10.1002/hyp.6424
Goffi G, Osti L, Nava CR, Maurer O, Pencarelli T, 2021. Is preservation the key to quality and tourists’ satisfaction? Evidence from Lake Garda. Tour Recreat Res 46:434-440. DOI: https://doi.org/10.1080/02508281.2020.1795591
Golub M, Thiery W, Marcé R, Pierson D, Vanderkelen I, Mercado D, et al., 2022. A framework for ensemble modelling of climate change impacts on lakes worldwide: the Isimip Lake sector. Geosci Model Dev Discuss 2022:1-57.
Goovaerts P, 1997. Geostatistics for natural resources evaluation. Oxford, Oxford University Press: 483 pp. DOI: https://doi.org/10.1093/oso/9780195115383.001.0001
Gronewold AD, Smith JP, Read LK, Crooks JL, 2020. Reconciling the water balance of large lake systems. Adv Water Resour 137:103505. DOI: https://doi.org/10.1016/j.advwatres.2020.103505
Guo M, Wu W, Zhou X, Chen Y, Li J, 2015. Investigation of the dramatic changes in lake level of the Bosten Lake in Northwestern China. Theor Appl Climatol 119:341-351. DOI: https://doi.org/10.1007/s00704-014-1126-y
Hamon RW, Weiss LL, Wilson WT, 1954. Insolation as an empirical function of daily sunshine duration. Mon Weather Rev 82:141-146. DOI: https://doi.org/10.1175/1520-0493(1954)082<0141:IAAEFO>2.0.CO;2
Hargreaves GH, Samani ZA, 1985. Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96-99. DOI: https://doi.org/10.13031/2013.26773
Hinegk L, Adami L, Zolezzi G, Tubino M, 2022. Implications of water resources management on the long-term regime of Lake Garda (Italy). J Environ Manage 301:113893. DOI: https://doi.org/10.1016/j.jenvman.2021.113893
Hood JL, Roy JW, Hayashi M, 2006. Importance of groundwater in the water balance of an alpine headwater lake. Geophys Res Lett 33:L13405. DOI: https://doi.org/10.1029/2006GL026611
Jensen ME, Haise HR, 1963. Estimating evapotranspiration from solar radiation. J Irrig Drain Div 89:15-41. DOI: https://doi.org/10.1061/JRCEA4.0000287
Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, et al., 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930-1941. DOI: https://doi.org/10.2134/jeq2008.0113
Jiang L, Nielsen K, Andersen OB, Bauer-Gottwein P, 2017. Monitoring recent lake level variations on the Tibetan Plateau using Cryosat-2 Sarin mode data. J Hydrol 544:109-124. DOI: https://doi.org/10.1016/j.jhydrol.2016.11.024
Kampf SK, Burges SJ, Hammond JC, Bhaskar A, Covino TP, Eurich A, et al., 2020. The case for an open water balance: Re-envisioning network design and data analysis for a complex, uncertain world. Water Resour Res 56:e2019WR026699. DOI: https://doi.org/10.1029/2019WR026699
Laiti L, Mallucci S, Piccolroaz S, Bellin A, Zardi D, Fiori A, et al., 2018. Testing the hydrological coherence of highresolution gridded precipitation and temperature data sets. Water Resour Res 54:1999-2016. DOI: https://doi.org/10.1002/2017WR021633
Lenters JD, Kratz TK, Bowser CJ, 2005. Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, Northern Wisconsin (USA). J Hydrol 308:168-195. DOI: https://doi.org/10.1016/j.jhydrol.2004.10.028
Lerman A, Hull A, 1987. Background aspects of lake restoration: water balance, heavy metal content, phosphorus homeostasis. Swiss J Hydrol 49:148-169. DOI: https://doi.org/10.1007/BF02538500
Li XY, Xu HY, Sun YL, Zhang DS, Yang ZP, 2007. Lake-level change and water balance analysis at Lake Ginghai, West China during recent decades. Water Resour Manage 21:1505-1516. DOI: https://doi.org/10.1007/s11269-006-9096-1
Longinelli A, Stenni B, Genoni L, Flora O, Defrancesco C, Pellegrini G, 2008. A stable isotope study of the Garda Lake, Northern Italy: Its hydrological balance. J Hydrol 360:103-116. DOI: https://doi.org/10.1016/j.jhydrol.2008.07.020
Lowe LD, Webb JA, Nathan RJ, Etchells T, Malano HM, 2009. Evaporation from water supply reservoirs: An assessment of uncertainty. J Hydrol 376:261-274. DOI: https://doi.org/10.1016/j.jhydrol.2009.07.037
Lu J, Sun G, McNulty SG, Amatya DM, 2005. A comparison of six potential evapotranspiration methods for regional use in the Southeastern United States 1. JAWRA J Am Water Resour Assoc 41:621-633. DOI: https://doi.org/10.1111/j.1752-1688.2005.tb03759.x
Majidi M, Alizadeh A, Farid A, Vazifedoust M, 2015. Estimating evaporation from lakes and reservoirs under limited data condition in a semi-arid region. Water Resour Manage 29:3711-3733. DOI: https://doi.org/10.1007/s11269-015-1025-8
Mallucci S, Majone B, Bellin A, 2019. Detection and attribution of hydrological changes in a large alpine river basin. J Hydrol 575:1214-1229. DOI: https://doi.org/10.1016/j.jhydrol.2019.06.020
Martin JL, McCutcheon SC, Schottman RW, 2018. Hydrodynamics and transport for water quality modeling. Boca Raton, CRC Press: 816 pp. DOI: https://doi.org/10.1201/9780203751510
Martinelli J, 1881. [Del Lago di Garda e del suo emissario il Mincio].[Book in Italian]. Mantova, Prem Stab Tipografico Mondovì.
Matheron G, 1963. Principles of geostatistics. Econ Geol 58:1246-1266. DOI: https://doi.org/10.2113/gsecongeo.58.8.1246
Matta E, Amadori M, Free G, Giardino C, Bresciani M, 2022. A satellite-based tool for mapping evaporation in inland water bodies: Formulation, application, and operational aspects. Remote Sens 14:2636. DOI: https://doi.org/10.3390/rs14112636
McMahon T, Peel M, Lowe L, Srikanthan R, McVicar T, 2013. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci 17:1331-1363. DOI: https://doi.org/10.5194/hess-17-1331-2013
Ministero dei Lavori Pubblici, Servizio Idrografico, 1917. [Annali idrologici - parte prima e seconda].[in Italian]. Annali Idrologici 1.
Mohebzadeh H, Fallah M, 2019. Quantitative analysis of water balance components in Lake Urmia, Iran using remote sensing technology. Remote Sens Appl Soc Environ 13:389–400. DOI: https://doi.org/10.1016/j.rsase.2018.12.009
Moore TN, Mesman JP, Ladwig R, Feldbauer J, Olsson F, Pilla RM, et al., 2021. Lakeensemblr: An R package that facilitates ensemble modelling of lakes. Environ Model Softw 143:105101. DOI: https://doi.org/10.1016/j.envsoft.2021.105101
Penman HL, 1948. Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A Math Phys Sci 193:120-145. DOI: https://doi.org/10.1098/rspa.1948.0037
Piccolroaz S, 2016. Prediction of lake surface temperature using the air2water model: guidelines, challenges, and future perspectives. Adv Oceanogr Limnol 7:5791. DOI: https://doi.org/10.4081/aiol.2016.5791
Piccolroaz S, Healey N, Lenters J, Schladow S, Hook S, Sahoo G, Toffolon M, 2018. On the predictability of lake surface temperature using air temperature in a changing climate: A case study for Lake Tahoe (USA). Limnol Oceanogr 63:243-261. DOI: https://doi.org/10.1002/lno.10626
Piccolroaz S, Majone B, Palmieri F, Cassiani G, Bellin A, 2015.On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling. Water Resour Res 51:7270-7288. DOI: https://doi.org/10.1002/2015WR016994
Piccolroaz S, Toffolon M, Majone B, 2013. A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrol Earth Syst Sci 17:3323-3338. DOI: https://doi.org/10.5194/hess-17-3323-2013
Piccolroaz S, Woolway RI, Merchant CJ, 2020. Global reconstruction of twentieth-century lake surface water temperature reveals different warming trends depending on the climatic zone. Clim Change 160:427-442. DOI: https://doi.org/10.1007/s10584-020-02663-z
Priestley CHB, Taylor RJ, 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100: 81–92. DOI: https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
Provincia Autonoma di Trento, 2006. [Piano Generale di Utilizzazione delle Acque Pubbliche].[in Italian]. Available from: http://pguap.provincia.tn.it/
Ranzi R, Grossi G, Gitti A, Taschner S, 2010. Energy and mass balance of the Mandrone glacier (Adamello, central Alps). Geogr Fis Dinam Quat 33:45-60.
Ranzi R, Caronna P, Tomirotti M, 2017. Impact of climatic and land use changes on river flows in the Southern Alps, p. 61-83. In: E Kolokytha, S Oishi and RSV Teegavarapu (eds.), Sustainable water resources planning and management under climate change. Singapore, Springer. DOI: https://doi.org/10.1007/978-981-10-2051-3_3
Ranzi R, Michailidi E, Tomirotti M, Crespi A, Brunetti M, Maugeri M, 2021, A multi century meteo hydrological analysis for the Adda river basin (Central Alps). Part II: Daily runoff (1845-2016) at different scales. Int J Climatol 41:181-199. DOI: https://doi.org/10.1002/joc.6678
Ravazzani G, Corbari C, Morella S, Gianoli P, Mancini M, 2012. Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins. J Irrig Drain Eng 138:592-599. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453
Rimmer A, Samuels R, Lechinsky Y, 2009. A comprehensive study across methods and time scales to estimate surface fluxes from Lake Kinneret, Israel. J Hydrol 379:181-192. DOI: https://doi.org/10.1016/j.jhydrol.2009.10.007
Rosenberry DO, Winter TC, Buso DC, Likens GE, 2007. Comparison of 15 evaporation methods applied to a small mountain lake in the Northeastern USA. J Hydrol 340:149-166. DOI: https://doi.org/10.1016/j.jhydrol.2007.03.018
Santilli M, Orombelli G, Pelfini M, 2002. Variations of Italian glaciers between 1980 and 1999 inferred by the data supplied by the Italian Glaciological Committee. Geograf Fis Din Quat 25:61-76.
Safeeq M, Bart RR, Pelak NF, Singh CK, Dralle DN, Hartsough P, Wagenbrenner JW, 2021. How realistic are water-balance closure assumptions? A demonstration from the Southern Sierra Critical Zone observatory and Kings River experimental watersheds. Hydrol Process 35:e14199. DOI: https://doi.org/10.1002/hyp.14199
Salmaso N, Mosello R, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Adv Oceanogr Limnol 1:2594. DOI: https://doi.org/10.4081/aiol.2010.5294
Scavia D, DePinto JV, Bertani I, 2016. A multi-model approachto evaluating target phosphorus loads for Lake Erie. J Great Lakes Res 42:1139-1150. DOI: https://doi.org/10.1016/j.jglr.2016.09.007
Schulz S, Darehshouri S, Hassanzadeh E, Tajrishy M, Schüth C, 2020. Climate change or irrigated agriculture - what drives the water level decline of Lake Urmia. Sci Rep 10:1-10. DOI: https://doi.org/10.1038/s41598-019-57150-y
Sen PK, 1968. Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379-1389. DOI: https://doi.org/10.1080/01621459.1968.10480934
Swenson S, Wahr J, 2009. Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370:163-176. DOI: https://doi.org/10.1016/j.jhydrol.2009.03.008
Szesztay K, 1974. Water balance and water level fluctuations of lakes. Hydrol Sci J 19:73-84. DOI: https://doi.org/10.1080/02626667409493872
Theil H, 1950. A rank-invariant method of linear and polynomial regression analysis. Ind Math 1:467-482.
Tian L, Liu Z, Gong T, Yin C, Yu W, Yao T, 2008. Isotopic variation in the lake water balance at the Yamdruk-Tso Basin, southern Tibetan plateau. Hydrol Process 22:3386-3392. DOI: https://doi.org/10.1002/hyp.6919
Toffolon N, Piccolroaz S, Majone B, Soja AM, Peeters F, Schmid M, Wüest A, 2014. Prediction of surface temperature in lakes with different morphology using air temperature. Limnol Oceanogr 59:2182-2202. DOI: https://doi.org/10.4319/lo.2014.59.6.2185
Togliani C, 2014. [La civiltà del fiume: Mincio paesaggio complesso. La civiltà del fiume].[Book in Italian]. Milan, Franco Angeli Ed.: 240 pp.
Tolotti M, Dubois N, Milan M, Perga ME, Straile D, Lami A, 2018. Large and deep perialpine lakes: a paleolimnological perspective for the advance of ecosystem science. Hydrobiologia 824:291-321. DOI: https://doi.org/10.1007/s10750-018-3677-x
Turner KW, Wolfe BB, Edwards TW, 2010. Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers. J Hydrol 386:103-117. DOI: https://doi.org/10.1016/j.jhydrol.2010.03.012
Valiantzas JD, 2006. Simplified versions for the Penman evaporation equation using routine weather data. J Hydrol 331:690-702. DOI: https://doi.org/10.1016/j.jhydrol.2006.06.012
Voinov A, Kolagani N, McCall MK, Glynn PD, Kragt ME, Ostermann FO, et al., 2016. Modelling with stakeholders - next generation. Environ Model Softw 77:196-220. DOI: https://doi.org/10.1016/j.envsoft.2015.11.016
Wale A, Rientjes T, Gieske A, Getachew H, 2009. Ungauged catchment contributions to Lake Tana’s water balance. Hydrol Process 23:3682-3693. DOI: https://doi.org/10.1002/hyp.7284
Winkler K, Fuchs R, Rounsevell M, Herold M, 2021. Global land use changes are four times greater than previously estimated. Nat Commun 12:1-10. DOI: https://doi.org/10.1038/s41467-021-22702-2
Winkler K, Fuchs R, Rounsevell MDA, Herold M, 2020. HILDA+ Global Land Use Change between 1960 and 2019.PANGAEA. Available from: https://doi.pangaea.de/10.1594/PANGAEA.921846
Winter TC, 1981. Uncertainties in estimating the water balance of lakes 1. JAWRA J Am Water Resour Assoc 17:82-115. DOI: https://doi.org/10.1111/j.1752-1688.1981.tb02593.x
Winter TC, Buso DC, Rosenberry DO, Likens GE, Sturrock AJM, Mau DP, 2003. Evaporation determined by the energy-budget method for Mirror Lake, New Hampshire. Limnol Oceanogr 48:995-1009. DOI: https://doi.org/10.4319/lo.2003.48.3.0995
Yin X, Nicholson SE, 1998. The water balance of Lake Victoria. Hydrol Sci J 43:789-811. DOI: https://doi.org/10.1080/02626669809492173
Zhang L, Potter N, Hickel K, Zhang Y, Shao Q, 2008. Water balance modeling over variable time scales based on the Budyko framework - model development and testing. J Hydrol 360:117-131. DOI: https://doi.org/10.1016/j.jhydrol.2008.07.021
Zhao L, Xia J, Xu CY, Wang Z, Sobkowiak L, Long C, 2013. Evapotranspiration estimation methods in hydrological models. J Geogr Sci 23:359-369. DOI: https://doi.org/10.1007/s11442-013-1015-9
Zhou S, Kang S, Chen F, Joswiak DR, 2013. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, South-Central Tibetan Plateau. J Hydrol 491:89-99. DOI: https://doi.org/10.1016/j.jhydrol.2013.03.030
Zorzin R, Tottola F, 2020. [Monte Baldo veronese: appunti di idrogeologia e carsismo].[Article in Italian]. Boll Museo Civ Storia Nat Verona 44:27-51.

Edited by

Michela Rogora, National Research Council, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy

Supporting Agencies

Italian Ministry of Education, University and Research (MIUR), European Union - FSE-REACT-EU, PON Research and Innovation 2014-2020

How to Cite

Hinegk, Luigi, Luca Adami, Sebastiano Piccolroaz, Marina Amadori, Marcello Moretti, Marco Tubino, and Marco Toffolon. 2023. “Multidecadal Analysis of Lake Garda Water Balance”. Journal of Limnology 82 (1). https://doi.org/10.4081/jlimnol.2023.2144.

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.