Synchrony in whitefish stock dynamics: disentangling the effects of local drivers and climate

Whitefish (courtesy of Rémi Masson)
Submitted: 15 March 2023
Accepted: 17 May 2023
Published: 8 June 2023
Abstract Views: 2095
PDF: 392
Appendix A: 59
Appendix B: 55
Appendix C: 52
Appendix D: 51
HTML: 20
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Synchronic variations in abundance in populations of the same species are common phenomena encountered in various environments, including lakes, and different taxa of freshwater fishes. This phenomenon can be caused by similar environmental conditions across physically separated populations. In the context of the ongoing climate change, it is essential to test this hypothesis, identify the factors driving the synchrony and elucidate the mechanisms, in the attempt to improve fisheries management. This study investigates synchronic variations in European whitefish (Coregonus spp.) populations in five peri-alpine lakes. The hypothesis suggests that shared biotic or abiotic factors contribute to similar trends in whitefish landings. Environmental and seasonal variables impacting the early life stages of the species were analyzed, and the Euclidean distances between the multivariate time series were calculated to identify similarities or dissimilarities in lake environmental parameters. We found that regional winter and spring temperatures were consistent across the lakes, but these factors did not fully account for variations in landings statistics. Wind intensity, water level and zooplankton abundance showed lake-specific patterns that could better explain local conditions and dynamics. Linear models did not reveal a coherent correlation with a common environmental variable across all lakes. However, distinct relationships were found in four of the lakes, with local factors significantly contributing to abundance variations. The spring abundance of Daphnia spp., a primary food source for whitefish larvae, was the main factor correlated with fish landing trends in Lake Geneva and Lake Bourget. Higher availability of Daphnia spp. may decrease intraspecific competition and density-dependent mortality. In Lake Neuchâtel, winter water temperature was negatively correlated with fish abundance proxies, suggesting that warmer winters may compromise reproduction success. Lake Annecy saw an increase in whitefish landings following a substantial reduction in fishing efforts during the late 2000s. A significant negative correlation was found between whitefish landings and fishing efforts. No relationship was found for Lake Aiguebelette, maybe due to a lack of zooplankton data. In conclusion, the observed synchrony in the European whitefish population is likely driven by a combination of interacting environmental and anthropogenic factors rather than a single common variable. Further research and a more detailed dataset are needed to better understand these complex relationships.

 

Article cover image: Whitefish (Credit: Rémi Masson)

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Andrade C, Leite SM, Santos JA, 2012. Temperature extremes in Europe: overview of their driving atmospheric patterns. Nat. Hazards Earth Syst. Sci. 12:1671–1691. DOI: https://doi.org/10.5194/nhess-12-1671-2012
Anneville O, Chang C-W, Dur G, Souissi S, Rimet F, Hsieh C, 2019. The paradox of re-oligotrophication: the role of bottom–up versus top–down controls on the phytoplankton community. Oikos 128:1666–1677. DOI: https://doi.org/10.1111/oik.06399
Anneville O, Hamelet V, 2019. Régime Alimentaire des Corégones du Léman en Milieu Pélagique. Rapp. Comm. int. prot. Eaux Léman contre pollut., Campagne 2018, p. 110-116.
Anneville O, Lainé L, Benker S, Ponticelli A, Gerdeaux D, 2007. Food Habits and ontogenetic changes in the diet of whitefish larvae in Lake Annecy. Bull. Fr. Peche Piscic. 21–33. DOI: https://doi.org/10.1051/kmae:2007015
Anneville O, Lasne E, Guillard J, Eckmann R, Stockwell JD, Gillet C, Yule DL, 2015. Impact of fishing and stocking practices on coregonid diversity. Food Nutr. Sci. 6:1045–1055. DOI: https://doi.org/10.4236/fns.2015.611108
Anneville O, Souissi S, Molinero JC, Gerdeaux D, 2009. Influences of human activity and climate on the stock-recruitment dynamics of whitefish, Coregonus lavaretus, in Lake Geneva. Fish. Manag. Ecol. 16:492–500. DOI: https://doi.org/10.1111/j.1365-2400.2009.00703.x
Anneville O, Vogel C, Lobry J, Guillard J, 2017. Fish communities in the Anthropocene: detecting drivers of changes in the deep peri-alpine Lake Geneva. Inland Waters 7:65–76. DOI: https://doi.org/10.1080/20442041.2017.1294350
Arnason R, 2006. Global warming, small pelagic fisheries and risk, p. 1-32. In: R. Hannesson, M. Barange and S.F. Herrick Jr (eds.), Climate Change and the economics of the world’s fisheries. Edward Elgar Publishing, Cheltenham. DOI: https://doi.org/10.4337/9781845428846.00006
Benito BM, Birks HJB, 2020. distantia: an open-source toolset to quantify dissimilarity between multivariate ecological time-series. Ecography 43:660–667. DOI: https://doi.org/10.1111/ecog.04895
Bernatchez L, Dodson JJ, 1994. Phylogenetic relationships among Palearctic and Nearctic whitefish (Coregonus sp.) populations as revealed by mitochondrial DNA variation. Can. J. Fish. Aquat. Sci. 51:240–251. DOI: https://doi.org/10.1139/f94-310
Bhagowati B, Ahamad KU, 2019. A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol. Hydrobiol. 19:155–166. DOI: https://doi.org/10.1016/j.ecohyd.2018.03.002
Brooke LT, 1975. Effect of different constant incubation temperatures on egg survival and embryonic development in lake whitefish (Coregonus clupeaformis). Trans. Am. Fish. Soc. 104:555–559. DOI: https://doi.org/10.1577/1548-8659(1975)104<555:EODCIT>2.0.CO;2
Brunel T, Boucher J, 2007. Long-term trends in fish recruitment in the north-east Atlantic related to climate change. Fish. Oceanogr. 16:336–349. DOI: https://doi.org/10.1111/j.1365-2419.2007.00435.x
Bunnell DB, Adams JV, Gorman OT, Madenjian CP, Riley SC, Roseman EF, Schaeffer JS, 2010. Population synchrony of a native fish across three Laurentian Great Lakes: evaluating the effects of dispersal and climate. Oecologia 162:641–651. DOI: https://doi.org/10.1007/s00442-009-1487-6
Bunnell DB, Höök TO, Troy CD, Liu W, Madenjian CP, Adams JV, 2017. Testing for synchrony in recruitment among four Lake Michigan fish species. Can. J. Fish. Aquat. Sci. 74:306–315. DOI: https://doi.org/10.1139/cjfas-2015-0534
Cattanéo F, Hugueny B, Lamouroux N, 2003. Synchrony in brown trout, Salmo trutta, population dynamics: a ‘Moran effect’ on early-life stages. Oikos 100:43–54. DOI: https://doi.org/10.1034/j.1600-0706.2003.11912.x
Champigneulle A, Cachera S, 2008. Evaluation de la stratégie de pacage lacustre (repeuplement en lac) pour le corégone (Coregonus lavaretus) au lac du Bourget. Rapport SHL 284-2008, INRA-Thonon, 45p.
Cingi S, Keinänen M, Vuorinen PJ, 2010. Elevated water temperature impairs fertilization and embryonic development of whitefish Coregonus lavaretus. J. Fish Biol. 76:502–521. DOI: https://doi.org/10.1111/j.1095-8649.2009.02502.x
Claramunt RM, Muir AM, Sutton TM, Peeters PJ, Ebener MP, Fitzsimons JD, Koops MA, 2010. Measures of larval lake whitefish length and abundance as early predictors of year-class strength in Lake Michigan. J. Great Lakes Res. 36:84–91. DOI: https://doi.org/10.1016/j.jglr.2010.02.005
Cury P, Roy C, 1989. Optimal Environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46:670–680. DOI: https://doi.org/10.1139/f89-086
De-Kayne R, Selz OM, Marques DA, Frei D, Seehausen O, Feulner PGD, 2022. Genomic architecture of adaptive radiation and hybridization in Alpine whitefish. Nat. Commun. 13:4479. DOI: https://doi.org/10.1038/s41467-022-32181-8
Dembkowski DJ, Willis DW, Wuellner MR, 2016. Synchrony in larval yellow perch abundance: the influence of the Moran effect during early life history. Can. J. Fish. Aquat. Sci. 73:1567–1574. DOI: https://doi.org/10.1139/cjfas-2015-0310
Desgué-Itier O, Melo Vieira Soares L, Anneville O, Bouffard D, Chanudet V, et al., 2023. Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes. Hydrol. Earth Syst. Sci. 27:837–859. DOI: https://doi.org/10.5194/hess-27-837-2023
Dippold DA, Aloysius NR, Keitzer SC, Yen H, Arnold JG, Daggupati P, et al., 2020. Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie. Freshwater Biol. 65:1487–1508. DOI: https://doi.org/10.1111/fwb.13515
Dokulil MT, Jagsch A, George GD, Anneville O, Jankowski T, Wahl B, et al., 2006. Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol. Oceanogr. 51:2787–2793. DOI: https://doi.org/10.4319/lo.2006.51.6.2787
Douglas MR, Brunner PC, 2002. Biodiversity of Central Alpine Coregonus (salmoniformes): Impact of One-Hundred Years of Management. Ecol. Appl. 12:154–172. DOI: https://doi.org/10.1890/1051-0761(2002)012[0154:BOCACS]2.0.CO;2
Drinkwater KF, 2005. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J. Mar. Sci. 62:1327–1337. DOI: https://doi.org/10.1016/j.icesjms.2005.05.015
Eckmann R, 1987. A comparative study on the temperature dependence of embryogenesis in three coregonids (Coregonus spp.) from Lake Constance. Swiss J. Hydrol. 49:353–362. DOI: https://doi.org/10.1007/BF02538295
Eckmann R, 2003. Alizarin marking of whitefish, Coregonus lavaretus otoliths during egg incubation. Fish. Manag. Ecol. 10:233–239. DOI: https://doi.org/10.1046/j.1365-2400.2003.00345.x
Eckmann R, 2013. A review of the population dynamics of coregonids in European alpine lakes. Adv. Limnol. 64:3–24. DOI: https://doi.org/10.1127/1612-166X/2013/0064-0002
Eckmann R, Kugler M, Ruhlé C, 2007. Evaluating the success of large-scale whitefish stocking at Lake Constance. Adv. Limnol. 60:361–368.
Eckmann R, Pusch M, 1989. The influence of temperature on growth of young coregonids (Coregonus lavaretus L.) in a large prealpine lake. Rapp. Procès Verbaux La Réun. Cons. Int. Explor. Mer. 191:201–208.
Faillettaz R, Beaugrand G, Goberville E, Kirby RR, 2019. Atlantic multidecadal oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5:eaar6993. DOI: https://doi.org/10.1126/sciadv.aar6993
Frossard V, Goulon C, Guillard J, Hamelet V, Jacquet S, Lainé L, Rautureau C, Rimet F, Tran-Khac V, 2022. Suivi de la qualité écologique du lac d’Annecy. Rapport 2021. SILA Éd INRA-Thonon 47.
Gerdeaux D, 2004. The recent restoration of the whitefish fisheries in Lake Geneva: the roles of stocking, reoligotrophication, and climate change. Ann. Zool. Fenn. 41:181–189.
Gerdeaux D, Janjua MY, 2009. Contribution of obligatory and voluntary fisheries statistics to the knowledge of whitefish population in Lake Annecy (France). Fish. Res. 96:6–10. DOI: https://doi.org/10.1016/j.fishres.2008.09.016
Giebelhausen B, Lampert W, 2001. Temperature reaction norms of Daphnia magna: the effect of food concentration. Freshwater Biol. 46:281–289. DOI: https://doi.org/10.1046/j.1365-2427.2001.00630.x
Gouhier TC, Guichard F, 2014. Synchrony: quantifying variability in space and time. Methods Ecol. Evol. 5:524–533. DOI: https://doi.org/10.1111/2041-210X.12188
Goulon C, Anneville O, Guillard J, 2021. Frai du corégone (Coregonus lavaretus) et de la perche (Perca fluviatilis) dans le Léman. Rapp. Comm. Int. Pour Prot. Eaux Léman Camp. 2020.
Goulon C, Guillard J, 2020. Groupe de travail recherche piscicole. Principaux résultats du suivi halieutique du Léman 2019 et exercice 2019-2020. Rapp. Comm. int. prot. Eaux Léman contre pollut., Campagne 2019: 14 pp.
Goulon C, Guillard J, 2022. Suivi halieutique du lac d’Annecy 2021. Convention Sila-DDT-ALP-Pêcheurs Pro: 32 pp.
Hansen BB, Grøtan V, Herfindal I, Lee AM, 2020. The Moran effect revisited: spatial population synchrony under global warming. Ecography 43:1591–1602. DOI: https://doi.org/10.1111/ecog.04962
Hauge K, Cleeland B, Wilson DC, 2009. Fisheries depletion and collapse. In: International Risk Governance Council Chemin de Balexert. Available from: https://irgc.org/wp-content/uploads/2018/09/Fisheries_Depletion_full_case_study_web.pdf
Hayden B, Harrod C, Thomas S, Kahilainen KK, 2022. Winter ecology of specialist and generalist morphs of European whitefish, Coregonus lavaretus, in subarctic northern Europe. J. Fish Biol. 101:389–399. DOI: https://doi.org/10.1111/jfb.14999
Hernvann P-Y, Gascuel D, 2020. Exploring the impacts of fishing and environment on the Celtic Sea ecosystem since 1950. Fish. Res. 225:105472. DOI: https://doi.org/10.1016/j.fishres.2019.105472
Heugens EHW, Tokkie LTB, Kraak MHS, Hendriks AJ, Straalen NM van, Admiraal W, 2006. Population growth of Daphnia magna under multiple stress conditions: Joint effects of temperature, food, and cadmium. Environ. Toxicol. Chem. 25:1399–1407. DOI: https://doi.org/10.1897/05-294R.1
Hinchliffe C, Matis PA, Schilling HT, Everett JD, Miskiewicz AG, Pepin P, Falster DS, Suthers IM, 2023. Plankton size spectra as an indicator of larval success in Pacific sardine (Sardinops sagax). Fish. Oceanogr. 32:196-212. DOI: https://doi.org/10.1111/fog.12620
Honsey AE, Bunnell DB, Troy CD, Fielder DG, Thomas MV, Knight CT, Chong SC, Höök TO, 2016. Recruitment synchrony of yellow perch (Perca flavescens, Percidae) in the Great Lakes region, 1966–2008. Fish. Res. 181:214–221. DOI: https://doi.org/10.1016/j.fishres.2016.04.021
Houde ED, 1987. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2:17–29.
Houde ED, 2016. Recruitment variability, p. 98–187 In: T. Jakobsen, M.J. Fogarty, B.A. Megrey and E. Moksness (eds.), Fish reproductive biology: Implications for assessment and management. Hoboken, J. Wiley & Sons. DOI: https://doi.org/10.1002/9781118752739.ch3
Hoyle JA, Johannsson OE, Bowen KL, 2011. Larval Lake Whitefish abundance, diet and growth and their zooplankton prey abundance during a period of ecosystem change on the Bay of Quinte, Lake Ontario. Aquat. Ecosyst. Health Manag. 14:66–74. DOI: https://doi.org/10.1080/14634988.2011.548730
Hurrell JW, Kushnir Y, Ottersen G, Visbeck M, 2003. An overview of the North Atlantic Oscillation, p. 1-35. In: J.W. Hurrell, Y. Kushnir, G. Ottersen and M. Visbeck (eds.), The North Atlantic Oscillation: Climatic Significance and Environmental Impact, American Geophysical Union (AGU). Hoboken, J. Wiley & Sons. DOI: https://doi.org/10.1029/134GM01
ICES, 2022. Cod (Gadus morhua) in divisions 7.e-k (eastern English Channel and southern Celtic Seas). ICES Advice. Available from: https://standardgraphs.ices.dk/ViewCharts.aspx?key=17272
IPCC, 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available from: https://www.ipcc.ch/report/ar6/wg2/
Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, et al., 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629-637. DOI: https://doi.org/10.1126/science.1059199
Jacquet S, Cachera S, Crépin L, Goulon C, Guillard J, Hamelet V, et al., 2022. Suivi environnemental des eaux du lac du Bourget pour l’année 2021. Rapport INRAE-CISALB. 174 pp.
Jacquet S, Domaizon I, Anneville O, 2014. The need for ecological monitoring of freshwaters in a changing world: a case study of Lakes Annecy, Bourget, and Geneva. Environ. Monit. Assess. 186:3455–3476. DOI: https://doi.org/10.1007/s10661-014-3630-z
Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, et al., 2021. Widespread deoxygenation of temperate lakes. Nature 594:66–70. DOI: https://doi.org/10.1038/s41586-021-03550-y
Jenny J-P, Anneville O, Arnaud F, Baulaz Y, Bouffard D, Domaizon I, et al., 2020. Scientists’ Warning to Humanity: Rapid degradation of the world’s large lakes. J. Great Lakes Res. 46:686–702. DOI: https://doi.org/10.1016/j.jglr.2020.05.006
Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, et al., 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biol. 50:1747–1771. DOI: https://doi.org/10.1111/j.1365-2427.2005.01415.x
Kangur K, Ginter K, Kangur A, Kangur P, Möls T, 2020. How did the late 1980s climate regime shift affect temperature-sensitive fish population dynamics: Case study of vendace (Coregonus albula) in a large north-temperate lake. Water 12:2694. DOI: https://doi.org/10.3390/w12102694
Kraemer BM, Pilla RM, Woolway RI, Anneville O, Ban S, Colom-Montero W, et al., 2021. Climate change drives widespread shifts in lake thermal habitat. Nat. Clim. Change 11:521–529. DOI: https://doi.org/10.1038/s41558-021-01060-3
Lang C, 1984. Eutrophication of Lakes Leman and Neuchâtel (Switzerland) indicated by oligochaete communities. Hydrobiologia 115:131–138. DOI: https://doi.org/10.1007/BF00027907
Legendre P, 2005. Species associations: the Kendall coefficient of concordance revisited. J. Agric. Biol. Environ. Stat. 10:226. DOI: https://doi.org/10.1198/108571105X46642
Liebhold A, Koenig WD, Bjørnstad ON, 2004. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35:467–490. DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132516
Lorenz P, Trommer G, Stibor H, 2019. Impacts of increasing nitrogen:phosphorus ratios on zooplankton community composition and whitefish (Coregonus macrophthalmus) growth in a pre-alpine lake. Freshwater Biol. 64:1210–1225. DOI: https://doi.org/10.1111/fwb.13296
Luczynski M, 1985. Survival of Coregonus albula (L.) (Teleostei) embryos incubated at different thermal conditions. Hydrobiologia 121:51–58. DOI: https://doi.org/10.1007/BF00035229
Lynam CP, Hay SJ, Brierley AS, 2004. Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnol. Oceanogr. 49:637–643. DOI: https://doi.org/10.4319/lo.2004.49.3.0637
Lynch AJ, Taylor WW, Beard TD, Lofgren BM, 2015. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes. J. Great Lakes Res. 41:415–422. DOI: https://doi.org/10.1016/j.jglr.2015.03.015
Marjomäki TJ, Auvinen H, Helminen H, Huusko A, Sarvala J, Valkeajärvi P, Viljanen M, Karjalainen J, 2004. Spatial synchrony in the inter-annual population variation of vendace (Coregonus albula (L.)) in Finnish lakes. Ann. Zool. Fenn. 41:225–240.
Matsuzaki SS, Suzuki K, Kadoya T, Nakagawa M, Takamura N, 2018. Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake. Ecology 99:2025–2036. DOI: https://doi.org/10.1002/ecy.2414
Maunder MN, Watters GM, 2003. A general framework for integrating environmental time series into stock assessment models: model description, simulation testing, and example. Available from: https://aquadocs.org/handle/1834/30961
McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR, 2015. Marine defaunation: Animal loss in the global ocean. Science 347:1255641. DOI: https://doi.org/10.1126/science.1255641
Mehner T, Emmrich M, Kasprzak P, 2011. Discrete thermal windows cause opposite response of sympatric cold-water fish species to annual temperature variability. Ecosphere 2:1-16. DOI: https://doi.org/10.1890/ES11-00109.1
Miller TJ, Crowder LB, Rice JA, Marschall EA, 1988. Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45:1657–1670. DOI: https://doi.org/10.1139/f88-197
Moore MV, Folt CF, Stemberger RS, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Arch. Hydrobiol. 289–319. DOI: https://doi.org/10.1127/archiv-hydrobiol/135/1996/289
Moran PAP, 1953. The statistical analysis of the Canadian Lynx Cycle: II. Synchronization and meteorology. Aust. J. Zool. 1:291–298. DOI: https://doi.org/10.1071/ZO9530291
Müller R, 1992. Trophic state and its implications for natural reproduction of salmonid fish. Hydrobiologia 243:261–268. DOI: https://doi.org/10.1007/978-94-011-2745-5_26
Myers JT, Yule DL, Jones ML, Ahrenstorff TD, Hrabik TR, Claramunt RM, et al., 2015. Spatial synchrony in cisco recruitment. Fish. Res. 165:11–21. DOI: https://doi.org/10.1016/j.fishres.2014.12.014
Nõges T, Anneville O, Guillard J, Haberman J, Järvalt A, Manca M et al., 2018. Fisheries impacts on lake ecosystem structure in the context of a changing climate and trophic state. J. Limnol. 77:1640. DOI: https://doi.org/10.4081/jlimnol.2017.1640
Nusslé S, 2021. Suivi des corégones du Lac de Neuchâtel. Suivi piscicole de 2019. Statistiques et environnement: 10 pp.
Nyberg P, Bergstrand E, Degerman E, Enderlein O, 2001. Recruitment of pelagic fish in an unstable climate: studies in Sweden’s four largest lakes. Ambio 30:559–564. DOI: https://doi.org/10.1579/0044-7447-30.8.559
O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, et al., 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42:10,773-10,781. DOI: https://doi.org/10.1002/2015GL066235
Østbye K, Bernatchez L, Næsje TF, Himberg K-JM, Hindar K, 2005. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Mol. Ecol. 14:4371–4387. DOI: https://doi.org/10.1111/j.1365-294X.2005.02737.x
Özkan K, Jeppesen E, Davidson TA, Bjerring R, Johansson LS, Søndergaard M, Lauridsen TL, Svenning J-C, 2016. Long-term trends and temporal synchrony in plankton richness, diversity and biomass driven by re-oligotrophication and climate across 17 Danish lakes. Water 8:427. DOI: https://doi.org/10.3390/w8100427
Patrick PH, Chen E, Parks J, Powell J, Poulton JS, Fietsch C-L, 2013. Effects of fixed and fluctuating temperature on hatch of round whitefish and lake whitefish eggs. North Am. J. Fish. Manag. 33:1091–1099. DOI: https://doi.org/10.1080/02755947.2013.824937
Perrier C, Molinero JC, Gerdeaux D, Anneville O, 2012. Effects of temperature and food supply on the growth of whitefish Coregonus lavaretus larvae in an oligotrophic peri-alpine lake. J. Fish Biol. 81:1501–1513. DOI: https://doi.org/10.1111/j.1095-8649.2012.03393.x
Phelps QE, Graeb BDS, Willis DW, 2008. Influence of the Moran effect on spatiotemporal synchrony in common carp recruitment. Trans. Am. Fish. Soc. 137:1701–1708. DOI: https://doi.org/10.1577/T07-108.1
Planque B, Buffaz L, 2008. Quantile regression models for fish recruitment–environment relationships: four case studies. Mar. Ecol. Prog. Ser. 357:213–223. DOI: https://doi.org/10.3354/meps07274
Pomeroy PP, 1991. A comparative assessment of temporal variation in diet of powan, Coregonus lavaretus (L.), from Loch Lomond and Loch Eck, Scotland, U.K. J. Fish Biol. 38:457–478. DOI: https://doi.org/10.1111/j.1095-8649.1991.tb03133.x
Ponton D, Müller R, 1989. Alimentation et facteurs de mortalité des larves de corégones (Coregonus sp.). Exemple de deux lacs de niveaux trophiques différents: les lacs de Sarnen et de Hallwil (Suisse Centrale). Aquat. Sci. 67–83. DOI: https://doi.org/10.1007/BF00877782
Pothoven SA, 2020. The influence of ontogeny and prey abundance on feeding ecology of age-0 Lake Whitefish (Coregonus clupeaformis) in southeastern Lake Michigan. Ecol. Freshw. Fish 29:103–111. DOI: https://doi.org/10.1111/eff.12498
Pourriot R, Meybeck M, 1995. Limnologie Générale. Paris, Masson: 976 pp.
Rasconi S, Anneville O, Laine L, 2020. The zooplankton of Lake Geneva. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2019, 2020: p. 112-121.
Ricker WE, 1940. Relation of “catch per unit effort” to abundance and rate of exploitation. J. Fish. Res. Board Can. 5a:43–70. DOI: https://doi.org/10.1139/f40-008
Rimet F, Anneville O, Barbet D, Chardon C, Crépin L, Domaizon I, et al., 2020. The Observatory on LAkes (OLA) database: Sixty years of environmental data accessible to the public: The Observatory on LAkes (OLA) database. J. Limnol. 79:1944. DOI: https://doi.org/10.4081/jlimnol.2020.1944
Rook BJ, Hansen MJ, Goldsworthy CA, Ray BA, Gorman OT, Yule DL, Bronte CR, 2021. Was historical cisco Coregonus artedi yield consistent with contemporary recruitment and abundance in Lake Superior? Fish. Manag. Ecol. 28:195–210. DOI: https://doi.org/10.1111/fme.12474
Roseman EF, Taylor WW, Hayes DB, Knight RL, Haas RC, 2001. Removal of walleye eggs from reefs in western Lake Erie by a catastrophic storm. Trans. Am. Fish. Soc. 130:341–346. DOI: https://doi.org/10.1577/1548-8659(2001)130<0341:ROWEFR>2.0.CO;2
Rosenberg AA, 2003. Managing to the margins: the overexploitation of fisheries. Front. Ecol. Environ. 1:102–106. DOI: https://doi.org/10.1890/1540-9295(2003)001[0102:MTTMTO]2.0.CO;2
Sabel M, Eckmann R, Jeppesen E, Rösch R, Straile D, 2020. Long-term changes in littoral fish community structure and resilience of total catch to re-oligotrophication in a large, peri-alpine European lake. Freshwater Biol. 65:1325–1336. DOI: https://doi.org/10.1111/fwb.13501
Sandström A, Ragnarsson-Stabo H, Axenrot T, Bergstrand E, 2014. Has climate variability driven the trends and dynamics in recruitment of pelagic fish species in Swedish Lakes Vänern and Vättern in recent decades? Aquat. Ecosyst. Health Manag. 17:349–356. DOI: https://doi.org/10.1080/14634988.2014.975668
Sarvala J, Helminen H, Ventelä A-M, 2020. Overfishing of a small planktivorous freshwater fish, vendace (Coregonus albula), in the boreal lake Pyhäjärvi (SW Finland), and the recovery of the population. Fish. Res. 230:105664. DOI: https://doi.org/10.1016/j.fishres.2020.105664
Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM, 2016. Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environ. Sci. Technol. 50:8923–8929. DOI: https://doi.org/10.1021/acs.est.6b02204
Schneider P, Hook SJ, 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 37:L22405. DOI: https://doi.org/10.1029/2010GL045059
Selz OM, Dönz CJ, Vonlanthen P, Seehausen O, 2020. A taxonomic revision of the whitefish of lakes Brienz and Thun, Switzerland, with descriptions of four new species (Teleostei, Coregonidae). ZooKeys 989:79–162. DOI: https://doi.org/10.3897/zookeys.989.32822
Selz OM, Seehausen O, 2023. A taxonomic revision of ten whitefish species from the lakes Lucerne, Sarnen, Sempach and Zug, Switzerland, with descriptions of seven new species (Teleostei, Coregonidae). ZooKeys 1144:95–169. DOI: https://doi.org/10.3897/zookeys.1144.67747
Shoji J, Toshito S, Mizuno K, Kamimura Y, Hori M, Hirakawa K, 2011. Possible effects of global warming on fish recruitment: shifts in spawning season and latitudinal distribution can alter growth of fish early life stages through changes in daylength. ICES J. Mar. Sci. 68:1165–1169. DOI: https://doi.org/10.1093/icesjms/fsr059
Soulignac F, Danis P-A, Bouffard D, Chanudet V, Dambrine E, Guénand Y, et al., 2018. Using 3D modeling and remote sensing capabilities for a better understanding of spatio-temporal heterogeneities of phytoplankton abundance in large lakes. J. Great Lakes Res. 44:756–764. DOI: https://doi.org/10.1016/j.jglr.2018.05.008
Steirou E, Gerlitz L, Apel H, Merz B, 2017. Links between large-scale circulation patterns and streamflow in Central Europe: A review. J. Hydrol. 549:484–500. DOI: https://doi.org/10.1016/j.jhydrol.2017.04.003
Stewart TR, Mäkinen M, Goulon C, Guillard J, Marjomäki TJ, Lasne E, et al., 2021. Influence of warming temperatures on coregonine embryogenesis within and among species. Hydrobiologia 848:4363–4385. DOI: https://doi.org/10.1007/s10750-021-04648-0
Straile D, Adrian R, Schindler DE, 2012. Uniform temperature dependency in the phenology of a keystone herbivore in lakes of the northern hemisphere. PLoS One 7:e45497. DOI: https://doi.org/10.1371/journal.pone.0045497
Straile D, Eckmann R, Jüngling T, Thomas G, Löffler H, 2007. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 151:521–529. DOI: https://doi.org/10.1007/s00442-006-0587-9
Tanaka KR, 2019. Chapter 19 - Integrating environmental information into stock assessment models for fisheries management, p. 193–206 In: A.M. Cisneros-Montemayor, W.W.L. Cheung and Y. Ota (eds.), Predicting future oceans. Amsterdam, Elsevier. DOI: https://doi.org/10.1016/B978-0-12-817945-1.00021-6
Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, et al., 2001. Forecasting agriculturally driven global environmental change. Science 292:281–284. DOI: https://doi.org/10.1126/science.1057544
Tran-Khac V, Quetin P, Anneville O, 2021. Evolution physico-chimique des eaux du Léman et données météorologiques. Rapp. Comm. Int. Pour Prot. Eaux Léman Camp. 2020.
Vendrametto Granzotti R, Agostinho AA, Bini LM, 2022. Drivers and spatial patterns of population synchrony of fish species in a floodplain. Freshwater Biol. 67:857–872. DOI: https://doi.org/10.1111/fwb.13886
Ventling-Schwank AR, Livingstone DM, 1994. Transport and burial as a cause of whitefish (Coregonus sp.) egg mortality in a eutrophic lake. Can. J. Fish. Aquat. Sci. 51:1908–1919. DOI: https://doi.org/10.1139/f94-192
Viljanen M, Koho J, 1991. The effects of egg size and incubation conditions on life history of vendace (Coregonus albula L.). SIL Proc. 1922-2010 24:2418–2423. DOI: https://doi.org/10.1080/03680770.1989.11899977
Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O, 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362. DOI: https://doi.org/10.1038/nature10824
Wanke T, Brämick U, Mehner T, 2016. Early detection of reproduction deficits and the compensatory potential of enhancement stocking for vendace, Coregonus albula, fisheries in German lakes. Fish. Manag. Ecol. 23:55–65. DOI: https://doi.org/10.1111/fme.12162
Ward MJ, Anderson MR, Fisher SJ, Isermann DA, Phelps QE, Willis DW, 2004. Relations between climatological variables and larval yellow perch abundance in eastern South Dakota glacial lakes. J. Freshw. Ecol. 19:213–218. DOI: https://doi.org/10.1080/02705060.2004.9664534
Wedekind C, Vonlanthen P, Guttry C de, Stadelmann R, Stadelmann N, Pirat A, Perroud G, 2022. Persistent high hatchery recruitment despite advanced reoligotrophication and significant natural spawning in a whitefish. Glob. Ecol. Conserv. 38:e02219. DOI: https://doi.org/10.1016/j.gecco.2022.e02219
Wilkońska H, 1992. The effect of temperature on condition, fecundity, and egg quality of vendace, Coregonus albula L. Fish. Aquat. Life 1:17–26.
Wojtal-Frankiewicz A, 2012. The effects of global warming on Daphnia spp. population dynamics: a review. Aquat. Ecol. 46:37–53. DOI: https://doi.org/10.1007/s10452-011-9380-x
Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D, Merchant CJ, 2017. Warming of Central European lakes and their response to the 1980s climate regime shift. Clim. Change 142:505–520. DOI: https://doi.org/10.1007/s10584-017-1966-4
Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S, 2020. Global lake responses to climate change. Nat. Rev. Earth Environ. 1:388–403. DOI: https://doi.org/10.1038/s43017-020-0067-5
Woolway RI, Merchant CJ, 2019. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12:271–276. DOI: https://doi.org/10.1038/s41561-019-0322-x
Wootton HF, Audzijonyte A, Morrongiello J, 2021. Multigenerational exposure to warming and fishing causes recruitment collapse, but size diversity and periodic cooling can aid recovery. Proc. Natl. Acad. Sci. 118:e2100300118. DOI: https://doi.org/10.1073/pnas.2100300118
Zischke MT, Bunnell DB, Troy CD, Berglund EK, Caroffino DC, Ebener MP, et al., 2017. Asynchrony in the inter-annual recruitment of lake whitefish Coregonus clupeaformis in the Great Lakes region. J. Great Lakes Res. 43:359–369. DOI: https://doi.org/10.1016/j.jglr.2017.01.007

Edited by

Diego Fontaneto, National Research Council, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy

How to Cite

Bourinet, Fabien, Orlane Anneville, Hilaire Drouineau, Chloé Goulon, Jean Guillard, and Alexandre Richard. 2023. “Synchrony in Whitefish Stock Dynamics: Disentangling the Effects of Local Drivers and Climate”. Journal of Limnology 82 (1). https://doi.org/10.4081/jlimnol.2023.2134.

Similar Articles

<< < 53 54 55 56 57 58 59 60 61 62 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo