Assessment of phosphorus behavior in sediments of Lake Sevan, Armenia

Submitted: 7 March 2023
Accepted: 21 September 2023
Published: 25 October 2023
Abstract Views: 503
PDF: 161
HTML: 2
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Lake Sevan is the largest freshwater lake in the Caucasus region and one of Eurasia's largest alpine lakes. The lake has been experiencing growing cyanobacteria blooms; however, the relevance of external and internal phosphorus (P) loading to its eutrophication is still not known. We carried out a sediment investigation of Lake Sevan to estimate the potentially mobile P, which could be a source of internal total phosphorus (TP)-loading; we also estimated external TP-loading and retention. The study was carried out at four sampling points of different depths to determine the spatial variability of P in 2018. The sediments had elevated TP contents at the sediment surface; potentially mobile P ranged from 20 to 60% in the top 2 cm. The upper 4 cm sediment had an elevated content of TN (8 to 16.1 mg N g-1 dw) and TP (1.2 to 1.7 mg P g-1 dw). Spatial variability of most of the measured parameters was more prominent in the upper 3 cm. External TP loading was estimated to be 110 tons annually, and the TP retention was 85%. The estimated TP stored in the top cm of the sediment is 1,500 tons. The potential for P release is high; the short-term exchange between oxic and anoxic overlying water could release 0.01 to 0.02 mg P L-1 from the top cm of the sediment, and long-term diagenesis and burial could release about 0.12 mg P cm-2. Internal P-loading in Lake Sevan may play an essential role in eutrophication, especially given the long flushing time of Lake Sevan.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Allan JD, Palmer M, Poff NL. 2005. Climate change and freshwater ecosystems. Yale University Press.
Aslanyan N, 2020. Republic of Armenia's Fourth National Communication on Climate Change. UNDP Armenia, Yeravan.
Avagyan A, Sahakyan L, Meliksetian K, Karakhanyan A, Lavrushin V, Atalyan T, et al., 2020. New evidences of Holocene tectonic and volcanic activity of the western part of Lake Sevan (Armenia). Geol. Q. 64:288-303. DOI: https://doi.org/10.7306/gq.1530
Avetisyan K, Mirzoyan N, Payne RB, Hayrapetyan V, Kamyshny Jr A, 2021. Eutrophication leads to the formation of a sulfide-rich deep-water layer in Lake Sevan, Armenia. Isotopes Environ. Health Stud. 57:535-552. DOI: https://doi.org/10.1080/10256016.2021.1970548
Babayan A, Hakobyan S, Jenderedjian K, Muradyan S, Voskanov M. 2005. Lake Sevan -Experience and lessons learned brief. Lake Basin Management Initiative (LBMI). International Lake Environment Committee Foundation. Available from: https://www.ilec.or.jp/en/lbmi/
Baborowski M, Simeonov V, Einax JW, 2012. Assessment of water quality in the Elbe river at flood water conditions based on cluster analysis, principle components analysis, and source apportionment. Clean Soil Air Water 40:373-380. DOI: https://doi.org/10.1002/clen.201100085
Bastviken D, Persson L, Odham G, Tranvik L, 2004. Degradation of dissolved organic matter in oxic and anoxic lake water. Limnol. Oceanogr. 49:109-116. DOI: https://doi.org/10.4319/lo.2004.49.1.0109
Baud A, Jenny J-P, Francus P, Gregory-Eaves I, 2021. Global acceleration of lake sediment accumulation rates associated with recent human population growth and land-use changes. J. Paleolimnol. 66:453-467. DOI: https://doi.org/10.1007/s10933-021-00217-6
Bertahas I, Dimitriou E, Karaouzas I, Laschou S, Zacharias I, 2006. Climate change and agricultural pollution effects on the trophic status of a Mediterranean lake. Acta Hydrochim. Hydrobiol. 34:349-359. DOI: https://doi.org/10.1002/aheh.200500637
Bloesch J, 1995. Mechanisms, measurement and importance of sediment resuspension in lakes. Mar. Freshwater Res. 46:295-304. DOI: https://doi.org/10.1071/MF9950295
Bormans M, Maršálek B, Jančula D, 2016. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review. Aquat. Ecol. 50:407-422. DOI: https://doi.org/10.1007/s10452-015-9564-x
Burdige DJ, 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107:467-485. DOI: https://doi.org/10.1021/cr050347q
Clerk S, Selbie DT, Smol JP, 2004. Cage aquaculture and water-quality changes in the LaCloche Channel, Lake Huron, Canada: a paleolimnological assessment. Can. J. Fish. Aquat. Sci. 61:1691-1701. DOI: https://doi.org/10.1139/f04-099
Condron LM, Newman S, 2011. Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J. Soils Sed. 11:830-840. DOI: https://doi.org/10.1007/s11368-011-0363-2
Dadi T, Rinke K, Friese K, 2020. Trajectories of sediment-water interactions in reservoirs as a result of temperature and oxygen conditions. Water 12:1065. DOI: https://doi.org/10.3390/w12041065
Dauda AB, Ajadi A, Tola-Fabunmi AS, Akinwole AO, 2019. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquacult. Fish. 4:81-88. DOI: https://doi.org/10.1016/j.aaf.2018.10.002
DIN 38414-12, 1986. German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of phosphorus in sludges and sediments (S 12). Beuth, Berlin.
DIN ISO 10694, 1995. Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis). Beuth, Berlin.
Edington DN, Robbins JA, 1990. Time scales of sediment focusing in large lakes as reviealed by measurement of fallout Cs-137, pp. 210-223. In: M.M. Tilzer and C. Serruya (eds.), Large lakes - Ecological structure and function. Springer, Berlin. DOI: https://doi.org/10.1007/978-3-642-84077-7_11
Einsele W, 1936. [Ueber die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See].[Article in German]. Arch. Hydrobiol. 29:664–686.
European Union Water Initiative Plus, 2020. Draft river basin management plan for Sevan River Basin district in Armenia. Accessed: July 20, 2023. Available from: https://euwipluseast.eu/en/component/k2/item/1269-armenia-sevan-river-basin-management-plan-2020-arm?fromsearch=1
Gabrielyan B, Khosrovyan A, Schultze M, 2022. A review of anthopogenic stressors on Lake Sevan, Armenia. J. Limnol. 81:2061. DOI: https://doi.org/10.4081/jlimnol.2022.2061
Garibyan M, 2007. Lake Sevan water levels. Hydrometeorological Agency, Ministry of Nature Protection, Sevan.
Gevorgyan G, Rinke K, Schultze M, Mamyan A, Kuzmin A, Belykh O, et al., 2020. First report about toxic cyanobacterial bloom occurrence in Lake Sevan, Armenia. Int. Rev. Hydrobiol. 105:131-142. DOI: https://doi.org/10.1002/iroh.202002060
Gevorgyan G, von Tuempling W, Shahnazaryan G, Friese K, Schultze M, 2023. Lake-wide assessment of trace elements in surface sediments and water of Lake Sevan. J. Limnol. 81:2096. DOI: https://doi.org/10.4081/jlimnol.2022.2096
Gonsiorczyk T, Casper P, Koschel R, 2001. Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: Importance of the permanently oxic sediment surface. Arch. Hydrobiol. 151:203-219. DOI: https://doi.org/10.1127/archiv-hydrobiol/151/2001/203
Gorbatov ES, Vardanyan AA, Korzhenkov AM, Razumniy SD, 2019. Lake Sevan (Armenia) deposits as indicator of paleoclimate and neotectonic processes. Izv. Atmos. Ocean. Phys. 55:860-869. DOI: https://doi.org/10.1134/S0001433819080048
Gowen RJ, 1994. Managing eutrophication associated with aquaculture development. J. Appl. Ichthyol. 10:242-257. DOI: https://doi.org/10.1111/j.1439-0426.1994.tb00164.x
Grüneberg B, Dadi T, Lindim C, Fischer H, 2014. Effects of nitrogen and phosphorus load reduction on benthic phosphorus release in a riverine lake. Biogeochemistry 123;185-202. DOI: https://doi.org/10.1007/s10533-014-0062-3
Gulakyan SZ, Wilkinson IP, 2002. The influence of earthquakes on large lacustrine ecosystems, with particular emphasis on Lake Sevan, Armenia. Hydrobiologia 472:123-130. DOI: https://doi.org/10.1023/A:1016398420530
Herzsprung P, Bozau E, Buettner O, Duffek A, Friese K, Koschorreck M, et al., 2006. Routine analysis of sediment pore water of high ionic strength. Acta Hydrochim. Hydrobiol.34:593-607. DOI: https://doi.org/10.1002/aheh.200500656
Herzsprung P, Friese K, Packroff G, Schimmele M, Wendt-Potthoff K, Winkler M, 1998. Vertical and annual distribution of ferric and ferrous iron in acidic mining lakes. Acta Hydrochim. Hydrobiol. 26:253-262. DOI: https://doi.org/10.1002/(SICI)1521-401X(199809)26:5<253::AID-AHEH253>3.0.CO;2-S
Hilden M, 2003. [Ermittlung von Stoff-Frachten in Fließgewässern: Probenahmestrategien und Berechnungsverfahren].[Book in German]. Kulturbuch-Verlag, Berlin: 71 pp.
Hovhannissian RH, 1994. [Lake Sevan yesterday, today].[in Russian]. Armenian National Academy of Sciences, Yerevan.
Hovanesian R, Bronozian H, 1994. Restoration and management of Lake Sevan in Armenia: problems and prospects. Lake Reserv. Manage. 9:178-182. DOI: https://doi.org/10.1080/07438149409354754
Hovhanissian R, Gabrielyan B, 2000. Ecological problems associated with the biological resource use of Lake Sevan, Armenia. Ecol. Eng. 16:175-180. DOI: https://doi.org/10.1016/S0925-8574(00)00102-6
Hupfer M, 1995. [Bindungsformen und Mobilität des Phosphors in Gewässersedimenten]. In: C. Steinberg, H. Bernhard and H. Klapper (eds.), [Handbuch Angewandte Limnologie].[Book in German]. Wiley-VCH, Weinheim.
Hupfer M, Gächter R, Giovanoli R, 1995. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat. Sci. 57:305-324. DOI: https://doi.org/10.1007/BF00878395
Hupfer M, Lewandowski J, 2005. Retention and early diagenetic transformation of phosphorus in Lake Arendsee (Germany) - consequences for management strategies. Arch. Hydrobiol. 164:143-167. DOI: https://doi.org/10.1127/0003-9136/2005/0164-0143
Hupfer M, Lewandowski J, 2008. Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. Int. Rev. Hydrobiol. 93:415-432. DOI: https://doi.org/10.1002/iroh.200711054
Hupfer M, Reitzel K, Grüneberg B, 2020. Methods for measuring internal loading, p. 203-204. In: A.D. Steinman and B.M. Spears (eds.), Internal phosphorus loading in lakes: Causes, case studies and management. J. Ross Publishing, Plantation. DOI: https://doi.org/10.1080/10402381.2020.1756998
Jensen JL, Christensen BT, Schjønning P, Watts CW, Munkholm LJ, 2018. Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure. Eur. J. Soil Sci. 69:604-612. DOI: https://doi.org/10.1111/ejss.12558
Jørgensen SE, Kamp-Nielsen L, Jacobsen OS, 1975. A submodel for anaerobic mud-water exchange of phosphate. Ecol. Model. 1:133-146. DOI: https://doi.org/10.1016/0304-3800(75)90028-9
Kalff J, 2002. Limnology: inland water ecosystems. Prentice Hall, Hoboken: 592 pp.
Karabin A, Ejsmont-Karabin J, Kornatowska R, 1997. Eutrophication processes in a shallow, macrophyte dominated lake – factors influencing zooplankton structure and density in Lake Łuknajno (Poland). Hydrobiologia 342:401-409. DOI: https://doi.org/10.1023/A:1017003810282
Katsev S, 2017. When large lakes respond fast: A parsimonious model for phosphorus dynamics. J. Great Lakes Res. 43:199-204. DOI: https://doi.org/10.1016/j.jglr.2016.10.012
Kawarazuka N, Béné C, 2011. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14:1927-1938. DOI: https://doi.org/10.1017/S1368980011000814
Khosrovyan A, Avalyan R, Atoyants A, Aghajanyan E, Hambaryan L, Aroutiounian R, Gabrielyan B, 2023. Tradescantia-based test systems can be used for the evaluation of the toxic potential of harmful algal blooms. Water 15:2500. DOI: https://doi.org/10.3390/w15132500
Klapper H, 1991. Control of eutrophication in inland waters. Ellis Horwood, Chichester: 337 pp.
Korzhenkov AM, Avanesian MA, Karakhanian AS, Virgino A, 2014. Seismic convolutions in the Quaternary deposits of Lake Sevan, Armenia. Russ. Geol. Geophys. 55:46-53. DOI: https://doi.org/10.1016/j.rgg.2013.12.003
Kozerski H-P, Kleeberg A, 1998. The sediments and benthic-pelagic exchange in the shallow Lake Müggelsee (Berlin, Germany). Int. Rev. Hydrobiol. 83:77-112. DOI: https://doi.org/10.1002/iroh.19980830109
Lammens EHRR, 1990. The relation of biotic and abiotic interactions to eutrophication in Tjeukemeer, The Netherlands. Hydrobiologia 191:29-37. DOI: https://doi.org/10.1007/BF00026036
Lehner B, Döll P, 2004. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296:1-22. DOI: https://doi.org/10.1016/j.jhydrol.2004.03.028
Lewandowski J, Laskov C, Hupfer M, 2007. The relationship between Chironomus plumosus burrows and the spatial distribution of porewater phosphate, iron and ammonium in lake sediments. Freshwater Biol. 52:331-343. DOI: https://doi.org/10.1111/j.1365-2427.2006.01702.x
Lin Q, Liu E, Zhang E, Nath B, Shen J, Yuan H, Wang R, 2018. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing. Sci. Total Environ. 613-614:331-341. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.073
Lu X, Lu Y, Chen D, Su C, Song S, Wang T, et al., 2019. Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve. J. o Environ. Sci. 75:359-369. DOI: https://doi.org/10.1016/j.jes.2018.05.018
Meyers PA, Ishiwatari R, 1993. Lacustrine organic geochemistryman overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20:867-900. DOI: https://doi.org/10.1016/0146-6380(93)90100-P
Mohamed MN, Wellen C, Parsons CT, Taylor WD, Arhonditsis G, Chomicki KM, et al., 2019. Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities. Freshw. Sci. 38:675-691. DOI: https://doi.org/10.1086/705915
Mortimer CH, 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 30:147-201. DOI: https://doi.org/10.2307/2256691
Mortimer CH, 1971. Chemical exchanges between sediments and water in great lakes - speculations on probable regulatory mechanisms. Limnol. Oceanogr. 16:387-404. DOI: https://doi.org/10.4319/lo.1971.16.2.0387
Nalbandyan AG, Ananyan VL, Burnett WC, Cable JC. Radioactivity of Lake Sevan (Armenia) bottom sediments, p. 401-404. Proceedings Conference on Isotopes in Environmental Studies, IAEA, Vienna: 2006.
Nicholls KH, 1998. El Niño, ice cover, and Great Lakes phosphorus: Implications for climate warming. Limnol. Oceanogr. 43:715-719. DOI: https://doi.org/10.4319/lo.1998.43.4.0715
Nurgaliev DK, Krylov PS, Kuzina DM, Minasyan RS, Karamyan RA, 2019. Integrated investigations of Lake Sevan bottom sediments, p. 241-248. In Proceedings International Multidisciplinary Scientific GeoConference: SGEM, Sofia. DOI: https://doi.org/10.5593/sgem2019V/4.2/S06.033
Nürnberg GK, 2009. Assessing internal phosphorus load – Problems to be solved. Lake Reserv. Manage. 25:419-432. DOI: https://doi.org/10.1080/00357520903458848
Poddubny SA, 2010. [Hydrophysical characteristics of the water body], pp. 41-49. In: D.A. Pavlov, C.A. Poddubny, B.K. Gabrielyan, A.V. Krylov (eds.), [Ecology of Lake Sevan during the period of water level rise - The results of Russian-Armenian biological expedition for hydroecological survey of Lake Sevan (Аrmenia) (2005-2009)].[Book in Russian]. Nauka, Makhachkala.
Psenner R, Pucsko R, Sager M, 1984. [Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Versuch einer Definition ökologisch wichtiger Fraktionen].[Article in German]. Arch. Hydrobiol. 70:111-155.
R-Core-Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Reitzel K, Hansen J, Andersen FØ, Hansen KS, Jensen HS, 2005. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environ. Sci. Technol. 39:4134-4140. DOI: https://doi.org/10.1021/es0485964
Rydin E, 2000. Potentially mobile phosphorus in Lake Erken sediment. Water Res. 34:2037-2042. DOI: https://doi.org/10.1016/S0043-1354(99)00375-9
Sahakyan L, Avagyan A, Colombie C, Joannin S, Sahakyan K, 2019. Microbialites (Sevanites) in a high-altitude Sevan Lake, p. 20-22. In L. Sahakyan, K. Meliksetyan and A. Avagyan (eds.), Proceedings International Conference Museums of Natural Sciences as a Factor of Geotourism Development. Institute of Geological Sciences NAS RA, Yerevan.
Sampels S, 2014. Towards a more sustainable production of fish as an important protein source for human nutrition. J. Fisheries Livest. Prod. 2:119. DOI: https://doi.org/10.4172/2332-2608.1000119
Schauser I, Chorus I, Lewandowski J, 2006. Effects of nitrate on phosphorus release: comparison of two Berlin lakes. Acta Hydrochim. Hydrobiol. 34:325-332. DOI: https://doi.org/10.1002/aheh.200500632
Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM, 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50:8923-8929. DOI: https://doi.org/10.1021/acs.est.6b02204
Shikhani M, Mi C, Gevorgyan A, Gevorgyan G, Misakyan A, Azizyan L, et al., 2022. Simulating thermal dynamics of the largest lake in the Caucasus region: The mountain Lake Sevan. J. Limnol. 81:2021. DOI: https://doi.org/10.4081/jlimnol.2021.2024
SigmaPlot Version 13, 2014. Systat Software, Inc. San Jose.
Skoog AC, Arias-Esquivel VA, 2009. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese. Sci. Total Environ. 407:6085-6092. DOI: https://doi.org/10.1016/j.scitotenv.2009.08.030
Smith VH, Schindler DW, 2009. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24:201-207. DOI: https://doi.org/10.1016/j.tree.2008.11.009
Sutherland RA, 1998. Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia 389:153-167. DOI: https://doi.org/10.1023/A:1003570219018
Talbot MR, 2001. Nitrogen isotopes in paleolimnology, p. 401-439. In: W.M. Last and J.P. Smol (eds.), Tracking environmental change using lake sediments. Vol. 2: Physical and geochemical methods. Kluwer, Dordrecht. DOI: https://doi.org/10.1007/0-306-47670-3_15
Tu L, Zander P, Szidat S, Lloren R, Grosjean M, 2020. The influences of historic lake trophy and mixing regime changes on long-term phosphorus fraction retention in sediments of deep eutrophic lakes: a case study from Lake Burgäschi, Switzerland. Biogeosciences 17:2715-2729. DOI: https://doi.org/10.5194/bg-17-2715-2020
Ulyanova DS, 1994. The precipitation of CaCO3 : a mechanism of self regulation of the Lake Sevan ecosystem, p. 121-128. In: N.E. Peters, R.J. Allan and V.T. Tsirkunov (eds.), Hydrological, chemical and biological processes of transformation and transport of contaminants in aquatic environments. Proceedings of the Rostov-on-Don Symposium May 1993. IAHS Press.
Vincent WF, 2018. Lakes - A very short introduction. Oxford University Press, Oxford: 146 pp. DOI: https://doi.org/10.1093/actrade/9780198766735.001.0001
Wauer G, Gonsiorczyk T, Casper P, Koschel R, 2005. P-immobilisation and phosphatase activities in lake sediment following treatment with nitrate and iron. Limnologica 35:102-108. DOI: https://doi.org/10.1016/j.limno.2004.08.001
Watson SB, Miller C, Arhonditsis G, Boyer GL, Carmichael W, Charlton MN, et al., 2016. The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. Harmful Algae 56:44-66. DOI: https://doi.org/10.1016/j.hal.2016.04.010
Wetzel RG, 2001. Limnology: Lake and river ecosystems. Academic Press, San Diego: 1006 pp.
Wilkinson IP, Gulakyan SZ, 2010. Holocene to recent Ostracoda of Lake Sevan, Armenia: biodiversity and ecological controls. Stratigraphy 7:301-315.
Wilkinson IP. 2020. Lake Sevan: Evolution, biotic variability and ecological degradation, p. 35-63. In: S. Mischke (ed.), Large Asian lakes in a changing world: natural state and human impact. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-42254-7_2
Withers PJA, Neal C, Jarvie HP, Doody DG, 2014. Agriculture and eutrophication: where do we go from here? Sustainability 6:5853-5875. DOI: https://doi.org/10.3390/su6095853
Wolkersdorfer C, 2008. Monitoring and sampling, p. 141-194. In: C. Wolkersdorfer (ed.), Water management at abandoned flooded underground mines. Fundamentals, tracer tests, modelling, water treatment. Springer Berlin, Heidelberg.
Wolkersdorfer C, 2023. Calculation of the Redox potential from the Reading of the ORP-Probe ("Redox Compensation"). Available from: https://www.wolkersdorfer.info/en/redoxprobes.html
Wood JM, Tataryn DJ, Gorsuch RL, 1996. Effects of under- and over extraction on principal axis factor analysis with varimax rotation. Psychol. Methods 1:354-365. DOI: https://doi.org/10.1037/1082-989X.1.4.354
Zamparas M, Zacharias I, 2014. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci. Total Environ. 496:551-562. DOI: https://doi.org/10.1016/j.scitotenv.2014.07.076

Edited by

Bardukh Gabrielyan, Scientific Center of Zoology and Hydroecology of the National Academy of Sciences of Armenia, Yerevan, Armenia

Supporting Agencies

Federal Ministry for Education and Research of Germany (BMBF) under the German-Armenian projects SevaMod and SEVAMOD2

How to Cite

Dadi, Tallent, Wolf von Tümpling, Chenxi Mi, Martin Schultze, and Kurt Friese. 2023. “Assessment of Phosphorus Behavior in Sediments of Lake Sevan, Armenia”. Journal of Limnology 81 (s1). https://doi.org/10.4081/jlimnol.2022.2132.

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo