Sub-fossil chironomids as indicators of hydrological changes in the shallow and high-altitude lake Shen Co, Tibetan Plateau, over the past two centuries

Submitted: 25 April 2022
Accepted: 20 July 2022
Published: 28 July 2022
Abstract Views: 2877
PDF: 489
Supplementary: 178
HTML: 132
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Understanding climate and monsoonal dynamics on the Tibetan Plateau is crucial, as recent hydrological changes, evidenced by rising lake levels, will be accelerated by current global warming and may alter aquatic habitats and species inventories. This study combines chironomid assemblages with sedimentological, mineralogical and geochemical data of a short sediment core (37.5 cm) from the high-altitude (> 4,733 m asl), saline (9 g L-1) and shallow (~5 m water depth) Shen Co, located in the southern part of the central Tibetan Plateau. The predominantly littoral, species-poor (10 chironomid morphotypes) chironomid assemblages are dominated by salt-tolerant taxa, that are highly sensitive to lake level fluctuations and macrophyte vegetation dynamics, making them ideally suited for tracking lake level changes over time. Results indicate a period (from ca. 1830 to 1921 CE) of drier conditions with low runoff and high evaporation rates in the Shen Co catchment, as indicated by a dominance of low-Mg calcite and dolomite and increased Ca/Fe and Sr/Rb ratios. This resulted in a decline in lake levels, an increase in salinity and the periodic occurrence of desiccation events at the sampling site. The first chironomid morphotype to appear after the dry period is Acricotopus indet. morphotype incurvatus, which indicate still low (<2 m) but rising lake levels after 1921 CE due to increasing runoff and a lower evaporation/precipitation ratio, as reflected by coarser grain size, higher quartz content and increased TN, TOC and Al/Si ratios. A replacement of A. indet. morphotype incurvatus by Procladius is observed as lake level rise continued after 1950 CE. The highest lake level is proposed for the period since 2006 CE. From 1955 to 1960 CE and from 2011 to 2018 CE, the presence of the phytophilic taxon Psectrocladius sordidellus-type supported abundant macrophyte growth. These changes are consistent with climate reconstructions from the northern and central Tibetan Plateau, indicating warmer and wetter climate conditions since the beginning of the 20th century, which have led to an increase in lake level in a number of Tibetan lakes. Our study specifically highlights 1920 and 1950 as years with enhanced precipitation. This can be attributed to the strong, with overlapping multidecadal cycles of Westerlies and monsoon systems. This study demonstrates the significance of studying small, shallow lakes, as they frequently contain aquatic communities that respond more rapidly to the changes in the lake system. In addition, this study expands our understanding of the ecology of Tibetan chironomid morphotypes, highlighting this group’s potential as paleolimnological proxies for investigating past environmental and climatic changes.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Anderson MJ, Ellingsen KE, McArdle BH, 2006. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9:683–693. DOI: https://doi.org/10.1111/j.1461-0248.2006.00926.x
Anslan S, Azizi Rad M, Buckel J, Echeverria Galindo P, Kai J, Kang W, Keys L, Maurischat P, Nieberding F, Reinosch E, Tang H, Tran TV, Wang Y, Schwalb A, 2020. Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations at the Nam Co catchment (Tibetan Plateau)? Biogeosciences 17:1261–1279. DOI: https://doi.org/10.5194/bg-17-1261-2020
Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 141:21–27. DOI: https://doi.org/10.1007/978-94-009-4047-5_4
Appleby PG, Richardson N, Nolan PJ, 1992. Self-absorption corrections km well-type germanium detectors. Nucl. Inst. Methods B 71:228–233. DOI: https://doi.org/10.1016/0168-583X(92)95328-O
Baker AS, McLachlan AJ, 1997. Food preferences of tanypodinae larvae (Diptera: Chironomidae). Hydrobiologia 62:283–288. DOI: https://doi.org/10.1007/BF00043546
Bennett KD, 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132:155–170. DOI: https://doi.org/10.1111/j.1469-8137.1996.tb04521.x
Berntsson A, Rosqvist GC, Velle G, 2014. Late-Holocene temperature and precipitation changes in Vindelfjällen, mid-western Swedish Lapland, inferred from chironomid and geochemical data. Holocene 24:78–92. DOI: https://doi.org/10.1177/0959683613512167
Bitušík P, Hamerlík, L, 2014. Príručka na určovanie lariev pakomárov (Diptera: Chironomidae) Slovenska Časť 2. Tanypodinae. [Identification guide of Slovakian chironomid larvae (Diptera: Chironomidae). Part II. Tanypodinae].[Book in Slovak]. Belianum. Matej Bel University Publ., Banská Bystrica. p. 96.
Bird BW, Lei Y, Perello M, Polissar PJ, Yao T, Finney B, Bain D, Pompeani D, Thompson LG, 2017. Late-Holocene Indian summer monsoon variability revealed from a 3300-year-long lake sediment record from Nir’pa Co, southeastern Tibet. Holocene 27:541–552. DOI: https://doi.org/10.1177/0959683616670220
Bolch T, Yao T, Kang S, Buchroithner MF, Scherer D, Maussion F, Huintjes E, Schneider C, 2010. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 4:419–433. DOI: https://doi.org/10.5194/tc-4-419-2010
Bowman JS, Sachs JP, 2008. Chemical and physical properties of some saline lakes in Alberta and Saskatchewan. Saline systems 4:3. DOI: https://doi.org/10.1186/1746-1448-4-3
Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ, 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biol. 46:253–267. DOI: https://doi.org/10.1046/j.1365-2427.2001.00652.x
Brodin YW, 1986. The Postglacial History of Lake Flarken, Southern Sweden, Interpreted from Subfossil Insect Remains. Int. Rev. ges. Hydrobiol. 71:371–432. DOI: https://doi.org/10.1002/iroh.19860710313
Brooks SJ, 2006. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat. Sci. Rev. 25:1894–1910. DOI: https://doi.org/10.1016/j.quascirev.2005.03.021
Brooks SJ, Langdon PG, Heiri O, 2007. The identification and use of Palearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London: 275 pp.
Cai Y, Ke C-Q, Li X, Zhang G, Duan Z, Lee H, 2019. Variations of Lake Ice Phenology on the Tibetan Plateau From 2001 to 2017 Based on MODIS Data. J. Geophys. Res. Atmos. 124:825–843. DOI: https://doi.org/10.1029/2018JD028993
Castillo AM, Sharpe DMT, Ghalambor CK, León LF de, 2018. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review. Hydrobiologia 807:1–17. DOI: https://doi.org/10.1007/s10750-017-3403-0
Chang JC, Zhang E, Liu E, Shulmeister J, 2017. Summer temperature variability inferred from subfossil chironomid assemblages from the south-east margin of the Qinghai–Tibetan Plateau for the last 5000 years. Holocene 27:1876–1884. DOI: https://doi.org/10.1177/0959683617708456
Chang JC, Shulmeister J, Gröcke DR, Woodward CA, 2018. Toward more accurate temperature reconstructions based on oxygen isotopes of subfossil chironomid head-capsules in Australia. Limnol. Oceanogr. 63:295–307. DOI: https://doi.org/10.1002/lno.10630
Chen J, Chen F, Zhang E, Brooks SJ, Zhou A, Zhang J, 2009. A 1000-year chironomid-based salinity reconstruction from varved sediments of Sugan Lake, Qaidam Basin, arid Northwest China, and its palaeoclimatic significance. Chin. Sci. Bull. 54:3749–3759. DOI: https://doi.org/10.1007/s11434-009-0201-8
Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J, 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biol. 19:2940–2955. DOI: https://doi.org/10.1111/gcb.12277
Chen J, Zhang E, Brooks SJ, Huang X, Wang H, Liu J, Chen F, 2014. Relationships between chironomids and water depth in Bosten Lake, Xinjiang, northwest China. J. Paleolimnol. 51:313–323. DOI: https://doi.org/10.1007/s10933-013-9727-5
Chen D, Zhang X, Xu B, Zhang Y, Fan J, Yao T, Guo Z, Hou Z, Cui P, Zhang T, 2015. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 60:3025–3035. DOI: https://doi.org/10.1360/N972015-00849
Chen C, Zhang X, Lu H, Jin L, Du Y, Chen F, 2021. Increasing summer precipitation in arid Central Asia linked to the weakening of the East Asian summer monsoon in the recent decades. Int. J. Climatol. 41:1024–1038. DOI: https://doi.org/10.1002/joc.6727
Cornes RC, Jones PD, Briffa KR, Osborn TJ, 2013. Estimates of the North Atlantic Oscillation back to 1692 using a Paris-London westerly index. Int. J. Climatol. 33:228–248. DOI: https://doi.org/10.1002/joc.3416
Croudace IW, Rothwell RG, 2015. Micro-XRF Studies of sediment cores. Springer, Dordrecht: 668 pp. DOI: https://doi.org/10.1007/978-94-017-9849-5
Cui A, Lu H, Liu X, Shen C, Xu D, Xu B, Wu N, 2021. Tibetan Plateau precipitation modulated by the periodically coupled Westerlies and Asian Monsoon. Geophys. Res. Lett. 48:e2020GL091543. DOI: https://doi.org/10.1029/2020GL091543
Dong S, Peng F, You Q, Guo J, Xue X, 2018. Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades. Reg. Environ. Change 18:477–487. DOI: https://doi.org/10.1007/s10113-017-1211-8
Downs RT, Hall-Wallace M, 2003. The American Mineralogist crystal structure database. Am. Mineral. 88:247–250.
Dr. H. Putz & Dr. K. Brandenburg GbR. Match! Crystal Impact, Kreuzherrenstr. 102, 53227 Bonn, Germany.
Duan K, Yao T, Thompson LG, 2006. Response of monsoon precipitation in the Himalayas to global warming. J. Geophys. Res. 111:D19110. DOI: https://doi.org/10.1029/2006JD007084
Dutt S, Gupta AK, Wünnemann B, Yan D, 2018. A long arid interlude in the Indian summer monsoon during ∼4,350 to 3,450 cal. yr BP contemporaneous to displacement of the Indus valley civilization. Quat. Int. 482:83–92. DOI: https://doi.org/10.1016/j.quaint.2018.04.005
Dypvik H, Harris NB, 2001. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chem. Geol. 181:131–146. DOI: https://doi.org/10.1016/S0009-2541(01)00278-9
Eggermont H, Heiri O, Verschuren D, 2006. Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes. Quat. Sci. Rev. 25:1966–1994. DOI: https://doi.org/10.1016/j.quascirev.2005.04.011
Erbaeva EA, Safronova GP, 2016. Register of Chironomids (Diptera, Chironomidae) of the Lake Khubsugul in Mongolia, p. 221–244. In: A. Stubbe (ed.), Erforschung biologischer Ressourcen der Mongolei. Martin-Luther-Universität Halle-Wittenberg.
Fang Y, Cheng W, Zhang Y, Wang N, Zhao S, Zhou C, Chen X, Bao A, 2016. Changes in inland lakes on the Tibetan Plateau over the past 40 years. J. Geogr. Sci. 26:415–438. DOI: https://doi.org/10.1007/s11442-016-1277-0
Ferrington LC, 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595:447–455. DOI: https://doi.org/10.1007/978-1-4020-8259-7_45
Gao Y, Cuo L, Zhang Y, 2014. Changes in Moisture Flux over the Tibetan Plateau during 1979–2011 and Possible Mechanisms. J. Climate 27:1876-1893. DOI: https://doi.org/10.1175/JCLI-D-13-00321.1
Greffard M-H, Saulnier-Talbot É, Gregory-Eaves I, 2012. Sub-fossil chironomids are significant indicators of turbidity in shallow lakes of northeastern USA. J. Paleolimnol. 47:561–581. DOI: https://doi.org/10.1007/s10933-012-9581-x
Grimm EC, 1987. CONISS: A Fortran 11 program for stratigraphically constrained cluster analysis by the method of incremental cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13:13-35. DOI: https://doi.org/10.1016/0098-3004(87)90022-7
Hamerlík L, Christoffersen KS, Brodersen KP, 2010. Short comment on chironomid assemblages and stratigraphy of high altitude lakes from Tibet. J. Chiron. Res. 23:661. DOI: https://doi.org/10.5324/cjcr.v0i23.661
Heinrichs ML, Walker IR, Mathewes RW, 2001. Chironomid-based paleosalinity records in southern British Columbia, Canada: a comparison of transfer functions. J. Paleolimnol. 26:147–159.
Heinrichs ML, Walker IR, 2006. Fossil midges and palaeosalinity: potential as indicators of hydrological balance and sea-level change. Quat. Sci. Rev. 25:1948–1965. DOI: https://doi.org/10.1016/j.quascirev.2006.01.022
Hershey AE, 1986. Selective Predation by Procladius in an Arctic Alaskan Lake. Can. J. Fish. Aquat. Sci. 43:2523–2528. DOI: https://doi.org/10.1139/f86-312
Hill MO, Gauch HG, 1980. Detrended correspondence analysis: An improved ordination technique. Vegetatio 42:47–58. DOI: https://doi.org/10.1007/978-94-009-9197-2_7
Hou J, Tian Q, Liang J, Wang M, He Y, 2017. Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial. J. Paleolimnol. 58:257–273. DOI: https://doi.org/10.1007/s10933-017-9976-9
IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 996 pp.
IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 3949 pp.
Jiang L, Nielsen K, Andersen OB, Bauer-Gottwein P, 2017. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. J. Hydrol. 544:109-124. DOI: https://doi.org/10.1016/j.jhydrol.2016.11.024
Juggins S, 2014. C2 - Software for ecological and palaeoecological data analysis and visualisation. Version 1.7.7. Newcastle University, Newcastle upon Tyne, UK.
Kasper T, Frenzel P, Haberzettl T, Schwarz A, Daut G, Meschner S, Wang J, Zhu L, Mäusbacher R, 2013. Interplay between redox conditions and hydrological changes in sediments from Lake Nam Co (Tibetan Plateau) during the past 4000cal BP inferred from geochemical and micropaleontological analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392:261–271. DOI: https://doi.org/10.1016/j.palaeo.2013.09.027
Kasper T, Wang J, Schwalb A, Daut G, Plessen B, Zhu L, Mäusbacher R, Haberzettl T, 2021. Precipitation dynamics on the Tibetan Plateau during the Late Quaternary – Hydroclimatic sedimentary proxies versus lake level variability. Glob. Planet. Change. 205:1–15. DOI: https://doi.org/10.1016/j.gloplacha.2021.103594
Keil A, Berking J, Mügler I, Schütt B, Schwalb A, Steeb P, 2010. Hydrological and geomorphological basin and catchment characteristics of Lake Nam Co, South-Central Tibet. Quat. Int. 218:118–130. DOI: https://doi.org/10.1016/j.quaint.2009.02.022
Kemp AES, 1996. Laminated sediments as palaeo-indicators, p. 7-12. In: AES Kemp (ed.), Palaeoclimatology and Palaeoceanography from Laminated Sediments. Geological Society, London. DOI: https://doi.org/10.1144/GSL.SP.1996.116.01.01
Koinig K, Shotky W, Lotter AF, Ohlendorf C, Sturm M, 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake - the role of climate, vegetation, and land-use history. J. Paleolimnol. 30:307–320.
Kylander ME, Klaminder J, Wohlfarth B, Löwemark L, 2013. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. J. Paleolimnol. 50:57–70. DOI: https://doi.org/10.1007/s10933-013-9704-z
Larocque I, 2001. How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172:133–142. DOI: https://doi.org/10.1016/S0031-0182(01)00278-4
Last WM, 2002. Tracking environmental change using lake sediments. Kluwer Academic Publishers, Dordrecht: 516 pp.
Laug A, Engels S, Hamerlík L, Turner F, Wang J, Schwalb A, 2018. “Orthocladiinae type K” A special group of chironomid morphotypes from the Tibetan Plateau. Conference Poster in IPA-IAL 2018 Joint Meeting: Unravelling the Past and Future of Lakes, Stockholm.
Laug A, Hamerlík L, Anslan S, Engels S, Turner F, Wang J, Schwalb A, 2019. Acricotopus indet. morphotype incurvatus: Description and genetics of a new Orthocladiinae (Diptera: Chironomidae) larval morphotype from the Tibetan Plateau. Zootaxa 4656:535-544. DOI: https://doi.org/10.11646/zootaxa.4656.3.10
Laug A, Schwarz A, Lauterbach S, Engels S, Schwalb A, 2020a. Ecosystem Shifts at two Mid-Holocene Tipping Points in the alpine Lake Son Kol (Kyrgyzstan, Central Asia). Holocene 30:1410–1419. DOI: https://doi.org/10.1177/0959683620932973
Laug A, Turner F, Engels S, Wang J, Haberzettl T, Ju J, Yu S, Kou Q, Börner N, Schwalb A, 2020b. Is there a common threshold to subfossil chironomid assemblages at 16 m water depth? Evidence from the Tibetan Plateau. J. Limnol. 79:278–292. DOI: https://doi.org/10.4081/jlimnol.2020.1964
Laug A, Haberzettl T, Pannes A, Schwarz A, Turner F, Wang J, Engels S, Rigterink S, Börner N, Ahlborn M, Ju J, Schwalb A, 2021. Holocene paleoenvironmental change inferred from two sediment cores collected in the Tibetan lake Taro Co. J. Paleolimnol. 66:171–186. DOI: https://doi.org/10.1007/s10933-021-00198-6
Lei Y, Yao T, Bird BW, Yang K, Zhai J, Sheng Y, 2013. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 483:61–67. DOI: https://doi.org/10.1016/j.jhydrol.2013.01.003
Lei Y, Yang K, Wang B, Sheng Y, Bird BW, Zhang G, Tian L, 2014a. Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim. Change 125:281–290. DOI: https://doi.org/10.1007/s10584-014-1175-3
Lei Y, Tian L, Bird BW, Hou J, Ding L, Oimahmadov I, Gadoev M, 2014b. A 2540-year record of moisture variations derived from lacustrine sediment (Sasikul Lake) on the Pamir Plateau. Holocene 24:761–770. DOI: https://doi.org/10.1177/0959683614530443
Li L, Yang S, Wang Z, Zhu X, Tang H, 2010. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 42:449–457. DOI: https://doi.org/10.1657/1938-4246-42.4.449
Li M, Kang S, Zhu L, You Q, Zhang Q, Wang J, 2008. Mineralogy and geochemistry of the Holocene lacustrine sediments in Nam Co, Tibet. Quat. Int. 187:105–116. DOI: https://doi.org/10.1016/j.quaint.2007.12.008
Lin Q, Xu L, Hou J, Liu Z, Jeppesen E, Han B-P, 2017. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming. Water Res. 124:618–629. DOI: https://doi.org/10.1016/j.watres.2017.07.078
Liu W, Wang L, Chen D, Tu K, Ruan C, Hu Z, 2016. Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Clim. Dyn. 46:3481–3497. DOI: https://doi.org/10.1007/s00382-015-2782-z
Lu C, Yu G, Xi G, 2005. Tibetan Plateau serves as a water tower. Proceedings 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05.
Ma N, Szilagyi J, Niu G-Y, Zhang Y, Zhang T, Wang B, Wu Y, 2016. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. J. Hydrol. 537:27–35. DOI: https://doi.org/10.1016/j.jhydrol.2016.03.030
Ma Y, Lu M, Chen H, Pan M, Hong Y, 2018. Atmospheric moisture transport versus precipitation across the Tibetan Plateau: A mini-review and current challenges. Atmos. Res. 209:50–58. DOI: https://doi.org/10.1016/j.atmosres.2018.03.015
Mason CF, Bryant RJ, 1974. Periphyton production and grazing by chironomids in Alderfen Broad, Norfolk. Freshwater Biol. 5:271–277. DOI: https://doi.org/10.1111/j.1365-2427.1975.tb00140.x
Meyers PA, Ishiwatari R, 1993. Lacustrine organic geochemistry - an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20:867–900. DOI: https://doi.org/10.1016/0146-6380(93)90100-P
Meyers PA, 2003. Applications of organic geochemistry to paleolimnological reconstructions:a summary of examples from the Laurentian Great Lakes. Org. Geochem. 34:261–289. DOI: https://doi.org/10.1016/S0146-6380(02)00168-7
Miles J, 2014. Tolerance and variance inflation factor. In: N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J.L. Teugels (eds.), Wiley StatsRef: Statistics Reference Online. J. Wiley & Sons, Chichester. DOI: https://doi.org/10.1002/9781118445112.stat06593
Moller Pillot HKM, 2013. Chironomidae Larvae, Volume 3: Orthocladiinae. Royal Dutch Natural History Society Foundation Publishing House. DOI: https://doi.org/10.1163/9789004278059
Morrill C, 2004. The influence of Asian summer monsoon variability on the water balance of a Tibetan lake. J. Paleolimnol. 32:273–286. DOI: https://doi.org/10.1023/B:JOPL.0000042918.18798.cb
Morrill C, Overpeck JT, Cole JE, Liu K, Shen C, Tang L, 2006. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quat. Res. 65:232–243. DOI: https://doi.org/10.1016/j.yqres.2005.02.014
Munsell Color, 2010. Munsell Soil Color Charts: with Genuine Munsell Color Chips. Munsell Color, Grand Rapids.
Nazarova L, Herzschuh U, Wetterich S, Kumke T, Pestryakova L, 2011. Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia. J. Paleolimnol. 45:57–71. DOI: https://doi.org/10.1007/s10933-010-9479-4
Nazarova L, Bleibtreu A, Hoff U, Dirksen V, Diekmann B, 2017. Changes in temperature and water depth of a small mountain lake during the past 3000 years in Central Kamchatka reflected by a chironomid record. Quat. Int. 447:46–58. DOI: https://doi.org/10.1016/j.quaint.2016.10.008
Nesbitt HW, Fedo CM, Young GM, 1997. Quartz and feldspar stability, steady and non‐steady‐state weathering, and petrogenesis of siliciclastic sands and muds. J. Geol. 105:173–192. DOI: https://doi.org/10.1086/515908
Oliva P, Viers J, Dupré B, 2003. Chemical weathering in granitic environments. Chem. Geol. 202:225–256. DOI: https://doi.org/10.1016/j.chemgeo.2002.08.001
Phan-Garrigues M, Curton A, Trinh T-H, Schuster M, 2020. Can wind-driven lakes develop in basins with a high rate of sediment supply? A remote sensing based assessment of the lakes of the Tibetan Plateau (Asia). Institute de Physique du Globe de Strasbourg, Ecole et observatoire des sciences de la Terre Université de Strasbourg: 14 pp.
Pu Y, Nace T, Meyers PA, Zhang H, Wang Y, Zhang CL, Shao X, 2013. Paleoclimate changes of the last 1000 yr on the eastern Qinghai–Tibetan Plateau recorded by elemental, isotopic, and molecular organic matter proxies in sediment from glacial Lake Ximencuo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 379-380:39–53. DOI: https://doi.org/10.1016/j.palaeo.2013.03.023
R Core Team, 2019. R: A language and environment for statistical computing. 1.1.456. R Foundation for Statistical Computing, Vienna.
Ramcharan V, Paterson CG, 1978. A partial analysis of ecological segregation in the chironomid community of a bog lake. Hydrobiologia 58:129–135. DOI: https://doi.org/10.1007/BF00007994
Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsex CB, Buch CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney C, van der Plicht J, 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55:1869–1887. DOI: https://doi.org/10.2458/azu_js_rc.55.16947
Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C, Butzin M, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kromer B, Manning SW, Muscheler R, Palmer JG, Pearson C, van der Plicht J, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni SM, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S, 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62:725–757. DOI: https://doi.org/10.1017/RDC.2020.41
Schnurrenberger D, Russell J, Kelts K, 2003. Classification of lacustrine sediments based on sedimentary components. J. Paleolimnol. 29:141–154. DOI: https://doi.org/10.1023/A:1023270324800
Schütt B, Berking J, Frechen M, Frenzel P, Schwalb A, Wrozyna C, 2010. Late Quaternary transition from lacustrine to a fluvio-lacustrine environment in the north-western Nam Co, Tibetan Plateau, China. Quat. Int. 218:104–117. DOI: https://doi.org/10.1016/j.quaint.2009.05.009
Sheng E, Yu K, Xu H, Lan J, Liu B, Che S, 2015. Late Holocene Indian summer monsoon precipitation history at Lake Lugu, northwestern Yunnan Province, southwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438:24–33. DOI: https://doi.org/10.1016/j.palaeo.2015.07.026
Su F, Duan X, Chen D, Hao Z, Cuo L, 2013. Evaluation of the Global Climate models in the CMIP5 over the Tibetan Plateau. J. Climate 26:3187–3208. DOI: https://doi.org/10.1175/JCLI-D-12-00321.1
Sun J, Yang K, Guo W, Wang Y, He J, Lu H, 2020. Why Has the Inner Tibetan Plateau become wetter since the mid-1990s? J. Climate 33:8507–8522. DOI: https://doi.org/10.1175/JCLI-D-19-0471.1
Tarkowska-Kukuryk M, 2014. Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: effect of macrophyte species and food resources. Limnology 15:141–153. DOI: https://doi.org/10.1007/s10201-014-0425-4
Ter Braak C, 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis, p. 69–77. In: I.C. Prentice and E. van der Maarel (eds.), Theory and models in vegetation science. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-009-4061-1_7
Thompson LG, Mosley-Thompson E, Davis ME, Bolzan JF, Dai J, Klein L, Yao T, Wu X, Xie Z, Gundestrup N, 1989. Holocene-late pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science 246:474–477. DOI: https://doi.org/10.1126/science.246.4929.474
Thompson LG, Yao T, Davis ME, Henderson A, Mosley-Thompson E, Lin P-N, Beer J, Synal H-A, Cole-Dai J, Bolzan JF, 1997. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825. DOI: https://doi.org/10.1126/science.276.5320.1821
Thompson LG, Tandong Y, Davis ME, Mosley-Thompson E, Mashiotta TA, Lin P-N, Mikhalenko VN, Zagorodnov VS, 2006. Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau. Ann. Glaciol. 43:61–69. DOI: https://doi.org/10.3189/172756406781812357
Thompson LG, Yao T, Davis ME, Mosley-Thompson E, Wu G, Porter SE, Xu B, Lin P-N, Wang N, Beaudon E, Duan K, Sierra-Hernández MR, Kenny DV, 2018. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains. Quat. Sci. Rev. 188:1–14. DOI: https://doi.org/10.1016/j.quascirev.2018.03.003
van Hoang L, Clift PD, Schwab AM, Huuse M, Nguyen DA, Zhen S, 2010. Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea, p. 219–244. In: PD Clift, R Tada, and H Zheng (eds.), Monsoon evolution and tectonic–Climate linkage in Asia. Geological Society, London. DOI: https://doi.org/10.1144/SP342.13
Verschuren D, Laird K, Cumming B, 2000a. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature 403:410–413. DOI: https://doi.org/10.1038/35000179
Verschuren D, Tibby J, Sabbe K, Roberts N, 2000b. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81:164–182. DOI: https://doi.org/10.1890/0012-9658(2000)081[0164:EODSAS]2.0.CO;2
Walker IR, 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6:29–40. DOI: https://doi.org/10.1016/0277-3791(87)90014-X
Wan W, Xiao P, Feng X, Li H, Ma R, Duan H, Zhao L, 2014. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 59:1021–1035. DOI: https://doi.org/10.1007/s11434-014-0128-6
Wang S, Dou H, 1998. Lakes in China. Science Press, Beijing: 598 pp.
Wang B, Bao Q, Hoskins B, Wu G, Liu Y, 2008. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35:2008GL034330. DOI: https://doi.org/10.1029/2008GL034330
Wang R, Yang X, Langdon P, Zhang E, 2011. Limnological responses to warming on the Xizang Plateau, Tibet, over the past 200 years. J. Paleolimnol. 45:257–271. DOI: https://doi.org/10.1007/s10933-011-9496-y
Wang X, Pang G, Yang M, 2018. Precipitation over the Tibetan Plateau during recent decades:a review based on observations and simulations. Int. J. Climatol. 38:1116–1131. DOI: https://doi.org/10.1002/joc.5246
White DS, Miller MF, 2008. Benthic invertebrate activity in lakes:linking present and historical bioturbation patterns. Aquat. Biol. 2:269-277. DOI: https://doi.org/10.3354/ab00056
Williams WD, Boulton AJ, Taaffe RG, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197:257-266. DOI: https://doi.org/10.1007/BF00026955
Williams DL, Goward S, Arvidson T, 2006. Landsat: Yesterday, today and tomorrow. Photogramm. Eng. Remote Sens. 72:1171-1178. DOI: https://doi.org/10.14358/PERS.72.10.1171
Wirth SB, Gilli A, Simonneau A, Ariztegui D, Vannière B, Glur L, Chapron E, Magny M, Anselmetti FS, 2013. A 2000 year long seasonal record of floods in the southern European Alps. Geophys. Res. Lett. 40:4025–4029. DOI: https://doi.org/10.1002/grl.50741
Wray RA, Sauro F, 2017. An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. Earth-Sci. Rev. 171:520–557. DOI: https://doi.org/10.1016/j.earscirev.2017.06.008
Wrozyna C, Frenzel P, Steeb P, Zhu L, van Geldern R, Mackensen A, Schwalb A, 2010. Stable isotope and ostracode species assemblage evidence for lake level changes of Nam Co, southern Tibet, during the past 600 years. Quat. Int. 212:2–13. DOI: https://doi.org/10.1016/j.quaint.2008.12.010
Wu D, Zhou A, Zhang J, Chen J, Li G, Wang Q, Chen L, Madsen D, Abbott M, Cheng B, Chen F, 2020. Temperature-induced dry climate in basins in the northeastern Tibetan Plateau during the early to middle Holocene. Quat. Sci. Rev. 237:106311. DOI: https://doi.org/10.1016/j.quascirev.2020.106311
Wulder MA, Loveland TR, Roy DP, Crawford CJ, Masek JG, Woodcock CE, Allen RG, Anderson MC, Belward AS, Cohen WB, Dwyer J, Erb A, Gao F, Griffiths P, Helder D, Hermosilla T, Hipple JD, Hostert P, Hughes MJ, Huntington J, Johnson DM, Kennedy R, Kilic A, Li Z, Lymburner L, McCorkel J, Pahlevan N, Scambos TA, Schaaf C, Schott JR, Sheng Y, Storey J, Vermote E, Vogelmann J, White JC, Wynne RH, Zhu Z, 2019. Current status of Landsat program, science, and applications. Remote Sens. Environ. 225:127–147. DOI: https://doi.org/10.1016/j.rse.2019.02.015
Wünnemann B, Yan D, Andersen N, Riedel F, Zhang Y, Sun Q, Hoelzmann P, 2018. A 14 ka high-resolution δ18O lake record reveals a paradigm shift for the process-based reconstruction of hydroclimate on the northern Tibetan Plateau. Quat. Sci. Rev. 200:65–84. DOI: https://doi.org/10.1016/j.quascirev.2018.09.040
Xu X, Lu C, Shi X, Gao S, 2008. World water tower: An atmospheric perspective. Geophys. Res. Lett. 35: 2008GL035867. DOI: https://doi.org/10.1029/2008GL035867
Yang B, Qin C, Wang J, He M, Melvin TM, Osborn TJ, Briffa KR, 2014b. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. P. Natl. Acad. Sci USA 111:2903–2908. DOI: https://doi.org/10.1073/pnas.1319238111
Yang K, Ye B, Zhou D, Wu B, Foken T, Qin J, Zhou Z, 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Change 109:517–534. DOI: https://doi.org/10.1007/s10584-011-0099-4
Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y, 2014a. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet Change 112:79–91. DOI: https://doi.org/10.1016/j.gloplacha.2013.12.001
Yang R, Zhu L, Wang J, Ju J, Ma Q, Turner F, Guo Y, 2017. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim. Change 140:621–633. DOI: https://doi.org/10.1007/s10584-016-1877-9
Yang X, Kamenik C, Schmidt R, Wang S, 2003. Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. J. Paleolimnol. 30:1–19.
Yao T, Shi Y, Thompson LG, 1997. High resolution record of paleoclimate since the Little Ice Age from the tibetan ice cores. Quat. Int. 37:19–23. DOI: https://doi.org/10.1016/1040-6182(96)00006-7
Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S, 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 51:525–548. DOI: https://doi.org/10.1002/rog.20023
You Q, Kang S, Aguilar E, Yan Y, 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005. J. Geophys. Res. 113:D23107. DOI: https://doi.org/10.1029/2007JD009389
You Q, Min J, Kang S, 2016. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 36:2660–2670. DOI: https://doi.org/10.1002/joc.4520
Yu Z, Wu G, Li F, Huang J, Xiao X, Liu K, 2021. Small-catchment perspective on chemical weathering and its controlling factors in the Nam Co basin, central Tibetan Plateau. J. Hydrol. 598:126315. DOI: https://doi.org/10.1016/j.jhydrol.2021.126315
Yuan D, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y, 2004. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578. DOI: https://doi.org/10.1126/science.1091220
Zervas D, Nichols GJ, Hall R, Smyth HR, Lüthje C, Murtagh F, 2009. SedLog: A shareware program for drawing graphic logs and log data manipulation. Comput. Geosci. 35:2151–2159. DOI: https://doi.org/10.1016/j.cageo.2009.02.009
Zhang C, Tang Q, Chen D, 2017b. Recent Changes in the Moisture Source of Precipitation over the Tibetan Plateau. J. Climate 30:1807–1819. DOI: https://doi.org/10.1175/JCLI-D-15-0842.1
Zhang E, Chang J, Cao Y, Tang H, Langdon P, Shulmeister J, Wang R, Yang X, Shen J, 2017c. A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China. Climate Past 13:185–199. DOI: https://doi.org/10.5194/cp-13-185-2017
Zhang E, Jones R, Bedford A, Langdon P, Tang H, 2007. A chironomid-based salinity inference model from lakes on the Tibetan Plateau. J. Paleolimnol. 38:477–491. DOI: https://doi.org/10.1007/s10933-006-9080-z
Zhang E, Tang H, Cao Y, Langdon P, Wang R, Yang X, Shen J, 2013. The effects of soil erosion on chironomid assemblages in Lugu Lake over the past 120 years. Intern. Rev. Hydrobiol. 98:165–172. DOI: https://doi.org/10.1002/iroh.201301468
Zhang G, Xie H, Kang S, Yi D, Ackley SF, 2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 115:1733–1742. DOI: https://doi.org/10.1016/j.rse.2011.03.005
Zhang G, Yao T, Shum CK, Yi S, Yang K, Xie H, Feng W, Bolch T, Wang L, Behrangi A, Zhang H, Wang W, Xiang Y, Yu J, 2017a. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44:5550–5560. DOI: https://doi.org/10.1002/2017GL073773
Zhang J, Hu Q, Li Y, Li H, Li J, 2021. Area, lake-level and volume variations of typical lakes on the Tibetan Plateau and their response to climate change, 1972–2019. Geo. Spat. Inf. Sci. 24:1-16. DOI: https://doi.org/10.1080/10095020.2021.1940318
Zhang J, Wang C, Jiang X, Song Z, Xie Z, 2020. Effects of human-induced eutrophication on macroinvertebrate spatiotemporal dynamics in Lake Dianchi, a large shallow plateau lake in China. Environ. Sci. Pollut. Res. 27:13066-13080. DOI: https://doi.org/10.1007/s11356-020-07773-w
Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR, 2008b. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322:940–942. DOI: https://doi.org/10.1126/science.1163965
Zhang Q, Kang S, Wang F, Li C, Xu Y, 2008a. Major Ion Geochemistry of Nam Co Lake and its Sources, Tibetan Plateau. Aquat. Geochem. 14:321–336. DOI: https://doi.org/10.1007/s10498-008-9039-y
Zhang W, Zhou T, Zhang L, 2017d. Wetting and greening Tibetan Plateau in early summer in recent decades. J. Geophys. Res. Atmos. 122:5808–5822. DOI: https://doi.org/10.1002/2017JD026468
Zhisheng A, Kutzbach JE, Prell WL, Porter SC, 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66. DOI: https://doi.org/10.1038/35075035
Zhou S, Kang S, Chen F, Joswiak DR, 2013. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. J. Hydrol. 491:89–99. DOI: https://doi.org/10.1016/j.jhydrol.2013.03.030

Edited by

Diego Fontaneto, CNR-IRSA Water Research Institute, Verbania, Italy

Supporting Agencies

Nam Co Observation and Research Station (NAMORS), International Research Training Group, Deutsche Forschungsgemeinschaft (DFG grant 317513741 / GRK 2309), Open Access Publication Funds of the Technische Universität Braunschweig

How to Cite

Rigterink, Sonja, Paula Echeverría-Galindo, Rodrigo Martínez-Abarca, Julieta Massaferro, Philipp Hoelzmann, Bernd Wünnemann, Andreas Laug, et al. 2022. “Sub-Fossil Chironomids As Indicators of Hydrological Changes in the Shallow and High-Altitude Lake Shen Co, Tibetan Plateau, over the past Two Centuries”. Journal of Limnology 81 (1). https://doi.org/10.4081/jlimnol.2022.2077.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo