Larval fish sensitivity to a simulated cold-water pulse varies between species and age

Submitted: 2 September 2021
Accepted: 27 June 2022
Published: 22 July 2022
Abstract Views: 2357
PDF: 401
Supplementary: 162
HTML: 135
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The release of cold-water from hypolimnetic zones of impoundments sharply reduces downstream riverine water temperature. This cold-water pollution (CWP) can extend for hundreds of kilometres, severely challenging the physiological ability of aquatic fauna, particularly ectotherms such as fish, to maintain essential processes such as metabolism, development and growth and survival. The impact of CWP on native fish, especially early life stages, is poorly known. We investigated the effect of a 24-hour exposure to a range of environmentally-related water temperatures (8, 10, 12, 14, 16, 18 and 20°C) on three age-classes (<24-hour-old, 7-day and 14-day-old larvae) of two Australian native fish species: Murray cod (Maccullochella peelii) and Macquarie perch (Macquaria australasica). Overall, larvae of M. peelii were more sensitive to lower water temperatures and hence CWP than M. australasica, indicated by higher rates of equilibrium loss. Larvae of M. peelii were most sensitive to exposure at seven days old whereas M. australasica larvae were most sensitive at <24-h-old. Using our results, we modelled pre- and post-impoundment temperature scenarios and estimated the downstream CWP footprint for both species in an Australian river reach. Larvae of M. peelii were predicted to be absent from the first 26 km of river downstream of the impoundment compared with no impact on the distribution of M. australasica. Managing riverine water temperature below impoundments is fundamental to promoting positive outcomes for endemic fish on not only a local, but global basis. This study emphasises the differential impact of CWP among the critical early life stages and fish species and highlights the urgent need to better manage hypolimnetic water releases to improve downstream river ecosystems.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J. V, Heibel, T. J., Wikramanayake, E., Olson, D., López, H. L., Reis, R. E., Lundberg, J. G., Sabaj Pérez, M. H., Petry, P., Pérez, M. H. S., and Petry, P. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience 58;403. DOI: https://doi.org/10.1641/B580507
Agostinho, A., Pelicice, F., and Gomes, L. (2008). Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132. DOI: https://doi.org/10.1590/S1519-69842008000500019
Almodóvar, A., Nicola, G. G., Ayllón, D., and Elvira, B. (2012). Global warming threatens the persistence of Mediterranean brown trout. Global Change Biol 18:1549–1560. DOI: https://doi.org/10.1111/j.1365-2486.2011.02608.x
Anweiler, K. V., Arnott, S. A., and Denson, M. R. (2014). Low-temperature tolerance of juvenile Spotted Seatrout in South Carolina. Trans Am Fishes Soc 143:999–1010. DOI: https://doi.org/10.1080/00028487.2014.911203
Arthington, A. H., and Pusey, B. J. (2003). Flow restoration and protection in Australian rivers. River Res Appl 19:377–395. DOI: https://doi.org/10.1002/rra.745
Beitinger, T. L., Bennett, W. A., and Mccauley, R. W. (2000). Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fishes 58:237–275. DOI: https://doi.org/10.1023/A:1007676325825
Benke, A. C., Chaubey, I., Ward, G. M., and Dunn, E. L. (2000). Flood pulse dynamics of an unregulated river floodplain in the Southeastern U.S. coastal plain. Ecology 81:2730-2741. DOI: https://doi.org/10.1890/0012-9658(2000)081[2730:FPDOAU]2.0.CO;2
Bolke, E.L. (1979). Dissolved-oxygen depletion and other effects of storing water in Flaming Gorge reservoir, Wyoming and Utah. Geological survey water-supply paper 2058. United States Government printing office, Washington. DOI: https://doi.org/10.3133/ofr7892
Brett, J. R. (1971). Energetic responses of Salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of Sockeye Salmon (Oncorhynchus nerkd). Am Zool 11:99-113. DOI: https://doi.org/10.1093/icb/11.1.99
Brill, R. (1994). A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish Oceanogr 3:204–216. DOI: https://doi.org/10.1111/j.1365-2419.1994.tb00098.x
Broadhurst, B. T., Ebner, B. C., and Clear, R. C. (2012). A rock-ramp fishway expands nursery grounds of the endangered Macquarie perch (Macquaria australasica). Aust J Zool 60:91–100. DOI: https://doi.org/10.1071/ZO12002
Buisson, L., Thuiller, W., Lek, S., Lim, P., and Grenouillet, G. (2008). Climate change hastens the turnover of stream fish assemblages. Global Change Biol 14:2232–2248. DOI: https://doi.org/10.1111/j.1365-2486.2008.01657.x
Bunn, S. E., and Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 30:492–507. DOI: https://doi.org/10.1007/s00267-002-2737-0
Cadwallader, P. L. (1979). Distribution of native and introduced fish in the Seven Creeks River system, Victoria. Aust J Ecol 4:361–385. DOI: https://doi.org/10.1111/j.1442-9993.1979.tb01565.x
Cadwallader, P. L. (1981). Past and present distributions and translocations of Macquarie Perch Macquaria australasica (Pisces: Percicthyidae), with particular reference to Victoria. Proc Roy Soc Victoria 93:23–30. DOI: https://doi.org/10.1071/MF9790401
Cadwallader, P. L., and Gooley, G. J. (1984). Past and present distributions and translocations of Murray cod Maccullochella peeli and trout cod M. macquariensis (Pisces: Percichthyidae) in Victoria. Proc Roy Soc Victoria 96:33–43.
Cadwallader, P. L., and Gooley, G. J. (1985). Propagation and rearing of Murray Cod Maccullochella peeli at the Warmwater Fisheries Station Pilot Project, Lake Charlegrark. Fisheries and Wildlife Service, Department of Conservation, Forests and Lands, Victoria, Australia.
Cadwallader, P. L., and Rogan, P. L. (1977). The Macquarie perch, Macquria australasica (Pisces: Percichthyidae), of Lake Eildon, Victoria. Aust J Ecol 2:409–418. DOI: https://doi.org/10.1111/j.1442-9993.1977.tb01156.x
Carlisle, D. M., Hawkins, C. P., Meador, M. R., Potapova, M., and Falcone, J. (2008). Biological assessments of Appalachian streams based on predictive models for fish, macroinvertebrate, and diatom assemblages. J N Am Benthol Soc 27:16–37. DOI: https://doi.org/10.1899/06-081.1
Carosi, A., Ghetti, L., Padula, R., and Lorenzoni, M. (2020). Population status and ecology of the Salmo trutta complex in an Italian river basin under multiple anthropogenic pressures. Ecol Evol 10:7320–7333. DOI: https://doi.org/10.1002/ece3.6457
Clarkson, R. W., and Childs, M. R. (2000). Temperature effects of hypolimnial-release dams on early life stages of Colorado River basin big-river fishes. Copeia 2000:402–412. DOI: https://doi.org/10.1643/0045-8511(2000)000[0402:TEOHRD]2.0.CO;2
Collier, K. J. (2002). Effects of flow regulation and sediment flushing on instream habitat and benthic invertebrates in a New Zealand river influenced by a volcanic eruption. River Res Appl 18:213–226. DOI: https://doi.org/10.1002/rra.666
Comte, L., and Olden, J. D. (2017). Climatic vulnerability of the world’s freshwater and marine fishes. Nat Clim Change 7:718–722. DOI: https://doi.org/10.1038/nclimate3382
Cottingham, P., Brown, P., Lyon, J., Pettigrove, V., Roberts, J., Vietz, G., and Woodman, A. (2014). Mid Goulburn River FLOWS study final report: flow recommendations. Goulburn Broken Catchment Management Authority Report, p. 1-124.
Donaldson, M. R., Cooke, S. J., Patterson, D. A., and Macdonald, J. S. (2008). Cold shock and fish. J Fish Biol 73:1491–1530. DOI: https://doi.org/10.1111/j.1095-8649.2008.02061.x
Draštík, V., Kubecka., Tušer, M., Čech, M., Frouzova, J., Jarolím, O., and Prchalová, M. (2008). The effect of hydropower on fish stocks: Comparison between cascade and non-cascade reservoirs. Hydrobiologia 609:25-36. DOI: https://doi.org/10.1007/s10750-008-9393-1
Einum, S., Sundt-Hansen, L., and Nislow, K. H. (2006). The partitioning of density-dependent dispersal, growth and survival throughout ontogeny in a highly fecund organism. Oikos 113:489–496. DOI: https://doi.org/10.1111/j.2006.0030-1299.14806.x
Feehan, P. (2014). Mid Goulburn River – water temperature review. Goulburn Broken Catchment Management Authority Report, p. 1–67.
Forbes, J. P., Watts, R. J., Robinson, W. A., Baumgartner, L. J., Allen, M. S., McGuffie, P., Cameron, L. M., and Crook, D. A. (2015). System-specific variability in Murray Cod and Golden Perch maturation and growth influences fisheries management options. N Am J Fish Manage 35:1226–1238. DOI: https://doi.org/10.1080/02755947.2015.1094153
Garrido, S., Ben-Hamadou, R., Santos, A. M. P., Ferreira, S., Teodósio, M. A., Cotano, U., Irigoien, X., Peck, M. A., Saiz, E., and Ré, P. (2015). Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci Rep 5:17065. DOI: https://doi.org/10.1038/srep17065
Garrido, S., Cristóvão, A., Caldeira, C., Ben-Hamadou, R., Baylina, N., Batista, H., Saiz, E., Peck, M. A., Ré, P., and Santos, A. M. P. (2016). Effect of temperature on the growth, survival, development and foraging behaviour of Sardina pilchardus larvae. Mar Ecol Progr Ser 559:131–145. DOI: https://doi.org/10.3354/meps11881
Gehrke, P. C., Gilligan, D. M., and Barwick, M. (2002). Changes in fish communities of the Shoalhaven River 20 years after construction of Tallowa Dam, Australia. River Res Appl 18:265-286. DOI: https://doi.org/10.1002/rra.669
Gehrke, P. C., and Harris, J. H. (2000). Large-scale patterns in species richness and composition of temperate riverine fish communities, south-eastern Australia. Mar Freshwater Res 51:165–182. DOI: https://doi.org/10.1071/MF99061
Gippel, C. J., and Finlayson, B. L. (1993). Downstream environmental impacts of regulation of the Goulburn River, Victoria. Hydrology and Water Resources Symposium - National Conference Publication 93:33–38.
Gooley, G. J., Anderson, T. A., and Appleford, P. (1995). Aspects of the reproductive cycle and gonadal development of Murray cod, Maccullochella peelii peelii (Mitchell) (Percichthyidae), in Lake Charlegrark and adjacent farm ponds, Victoria, Australia. Mar Freshwater Res 46:723–728. DOI: https://doi.org/10.1071/MF9950723
Hammer, M., Wedderburn, S., and van Weenen, J. (2009). Action Plan for South Australian freshwater fishes. Native Fish Australia (SA) Inc.: Adelaide, SA, Australia.
Hari, R. E., Livingstone, D. M., Siber, R., Burkhardt-Holm, P., and Guttinger, H. (2006). Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Global Change Biol 12:10–26. DOI: https://doi.org/10.1111/j.1365-2486.2005.001051.x
Horwitz, R. J. (1978). Temporal variability patterns and the distributional patterns of stream fishes. Ecol Monogr 48:307–321. DOI: https://doi.org/10.2307/2937233
Humphries, P. (2005). Spawning time and early life history of Murray cod, Maccullochella peelii peelii (Mitchell) in an Australian river. Environ Biol Fish 72:393–407. DOI: https://doi.org/10.1007/s10641-004-2596-z
Humphries, P., King, A. J., and Koehn, J. D. (1999). Fish, flows and flood plains: Links between freshwater fishes and their environment in the Murray-Darling River system, Australia. Environ Biol Fish 56:129–151. DOI: https://doi.org/10.1023/A:1007536009916
Humphries, P., Serafini, L. G., and King, A. J. (2002). River regulation and fish larvae: Variation through space and time. Freshwater Biol 47:1307–1331. DOI: https://doi.org/10.1046/j.1365-2427.2002.00871.x
Hundt, M., Schiffer, M., Weiss, M., Schreiber, B., Kreiss, C. M., Schulz, R., and Gergs, R. (2015). Effect of temperature on growth, survival and respiratory rate of larval allis shad Alosa alosa. Knowl Manag Aquat Ec 416:27. DOI: https://doi.org/10.1051/kmae/2015023
Hutchison, V. H., and Maness, J. D. (1979). The role of behavior in temperature acclimation and tolerance in ectotherms. Amn Zool 19:367–384. DOI: https://doi.org/10.1093/icb/19.1.367
Ingram, B. A., Barlow, C. G., Burchmore, J. J., Gooley, G. J., Rowland, S. J., and Sanger, A. C. (1990). Threatened native freshwater fishes in Australia–some case histories. J Fish Biol 37:175–182. DOI: https://doi.org/10.1111/j.1095-8649.1990.tb05033.x
Ingram, B. A., Douglas, J. W., and Lintermans, M. (2000). Threatened fishes of the world: Macquaria australasica Cuvier, 1830 (Percichthyidae). Environ Biol Fish 59:68. DOI: https://doi.org/10.1023/A:1007669423532
Johnston, I. A., and Dunn, J. (1987). Temperature acclimation and metabolism in ectotherms with reference to teleost fish. Symp Soc Expe Biol 41:67-93.
Junk, W. J., Bayley, P. B., and Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Proceedings of the International Large River Symposium. Canadian Special Publications Fisheries Aquatic Sciences 106:110-127.
Kärcher, O., Hering, D., Frank, K., and Markovic, D. (2019). Freshwater species distributions along thermal gradients. Ecol Evol 9:111-124. DOI: https://doi.org/10.1002/ece3.4659
Kearns, J., Ayres, R., O’Mahony, J., Hackett, G., Tonkin, Z., and Lyon, J. (2014). Status of Macquarie perch (Macquaria australasica) in King Parrot Creek, and establishment of an acoustic receiver array. Confidential Client Summary Report prepared for the Goulburn-Broken Catchment Authority. Department of Sustainability and Environment, Melbourne, Victoria, Australia.
Kennard, M. J., Pusey, B. J., Olden, J. D., MacKay, S. J., Stein, J. L., and Marsh, N. (2010). Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biol 55:171–193. DOI: https://doi.org/10.1111/j.1365-2427.2009.02307.x
King, A. J., Gwinn, D. C., Tonkin, Z., Mahoney, J., Raymond, S., and Beesley, L. (2015). Using abiotic drivers of fish spawning to inform environmental flow management. J Appl Ecol 53:34-43. DOI: https://doi.org/10.1111/1365-2664.12542
Kingsford, R. T., and Thomas, R. F. (2004). Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in arid Australia. Environ Manage 34:383–396. DOI: https://doi.org/10.1007/s00267-004-0250-3
Kitchell, J. F., Stewart, D. J., and Weininger, D. (1977). Applications of a bioenergetics model to Yellow Perch (Perca flavescens) and Walleye (Stizostedion vitreum vitreum). J Fish Res Board Can 34:1922–1935. DOI: https://doi.org/10.1139/f77-258
Koehn, J. D. (1993). Freshwater fish habitats: Key factors and methods to determine them. Bureau Resour Sci Proc 77–83.
Koehn, J. D. (2006). The ecology and conservation management of Murray Cod Maccullochella peelii peelii. Ph.D. Thesis, University of Melbourne, Australia.
Koehn, J. D. (2011). Spatial management of freshwater fish: A case study for Murray cod, p. 14-30. In: M.A. Treloar and R. Tilzey (eds.), Spatial Management in Fisheries. Workshop Proceedings Canberra. Australian Society for Fish Biology, Canberra.
Koehn, J. D., Doeg, T. J., Harrington, D. J., and Milledge, G. A. (1995). The effects of Dartmouth Dam on the aquatic fauna of the Mitta Mitta River. Report to the Murray–Darling Basin Commission. Arthur Rylah Institute for Environmental Research, Melbourne, Victoria, Australia.
Koehn, J. D., and Harrington, D. J. (2005). Collection and distribution of the early life stages of the Murray cod (Maccullochella peelii peelii) in a regulated river. Aust J Zool 53:137–144. DOI: https://doi.org/10.1071/ZO04086
Koehn, J. D., and Harrington, D. J. (2006). Environmental conditions and timing for the spawning of Murray cod (Maccullochella peelii peelii) and the endangered trout cod (M. Macquariensis) in southeastern Australian rivers. River Res Appl 22:327–342. DOI: https://doi.org/10.1002/rra.897
Koehn, J. D., McKenzie, J. A., O’Mahony, D. J, Nicol, S. J., O’Connor, J. P., and O’Connor, W. G. (2009). Movements of Murray cod (Maccullochella peelii peelii) in a large Australian lowland river. Ecol Freshwater Fish 18:594-602. DOI: https://doi.org/10.1111/j.1600-0633.2009.00375.x
Koehn, J. D., Raymond, S. M., Stuart, I., Todd, C. R., Balcombe, S. R., Zampatti, B. P., Bamford, H., Ingram, B. A., Bice, C. M., Burndred, K., Butler, G., Baumgartner, L., Clunie, P., Ellis, I., Forbes, J. P., Hutchison, M., Koster, W. M., Lintermans, M., Lyon, J. P., Mallen-Cooper, M., McLellan, M., Pearce, L., Ryall, J., Sharpe, C., Stoessel, D. J., Thiem, J. D., Tonkin, Z., Townsend, A., and Ye, Q. (2020). A compendium of ecological knowledge for restoration of freshwater fishes in Australia’s Murray–Darling Basin. Mar Freshwater Res 71:1391–1463. DOI: https://doi.org/10.1071/MF20127
Koster, W., Crook, D. A., Dawson, D., and P. Moloney P. (2012). Status of fish populations in the lower Goulburn River (2003-2012). Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment, Heidelberg, Victoria.
Kucharczyk, D., Luczynski, M., Kujawa, R., and Czerkies, P. (1997). Effect of temperature on embryonic and larval development of bream (Abramis brama L.). Aquat Sci 59:214–224. DOI: https://doi.org/10.1007/BF02523274
Laurel, B. J., and Blood, D. M. (2011). The effects of temperature on hatching and survival of northern rock sole larvae (Lepidopsetta Polyxystra). Fish Bull 109:282–291.
Lehner, B., Liermann, C.R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf, N., and Wisser, D. (2011). High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management. Front Ecol Environ 9:494-502. DOI: https://doi.org/10.1890/100125
Lintermans, M. (2007). Fishes of the Murray-Darling Basin: An introductory guide. Murray-Darling Basin Commission: Canberra, ACT, Australia.
Lintermans, M., Thiem, J., Broadhurst, B., Ebner, B., Clear, R., Starrs, D., Frawley, K., and Norris, R. (2008). Constructed homes for threatened fishes in the Cotter River catchment: Phase 1 Report to ACTEW Corporation. Institute for Applied Ecology, University of Canberra, ACT, Australia.
Lugg, A., and Copeland, C. (2014). Review of cold water pollution in the Murray-Darling Basin and the impacts on fish communities. Ecol Manage Restor 15:71–79. DOI: https://doi.org/10.1111/emr.12074
Lyon, J. P., Ryan, T. J., and Scroggie, M. P. (2008). Effects of temperature on the fast-start swimming performance of an Australian freshwater fish. Ecol Freshw Fish 17:184–188. DOI: https://doi.org/10.1111/j.1600-0633.2007.00244.x
Maheshwari, B. L., Walker, K. F., and McMahon, T.A. (1995). Effects of regulation on the flow regime of the River Murray, Australia. Regul Rivers 10:15–38. DOI: https://doi.org/10.1002/rrr.3450100103
Marshall, D. W., Otto, M., Panuska, J. C., Jaeger, S. R., Sefton, D., and Baumberger, T. R. (2006). Effects of hypolimnetic releases on two impoundments and their receiving streams in Southwest Wisconsin. Lake Reserv Manage 22:223–232. DOI: https://doi.org/10.1080/07438140609353899
Martinez-Porchas, M., and Hernandez-Rodriguez, M. (2010). Critical thermal maxima and minima of Sardinops sagax caeruleus Girard 1854 and the analyses of behavioral responses to establish adequate endpoints. Trop Zool 23:139–146.
McCarthy, M. A. (1999). Effects of competition on natal dispersal distance. Ecol Modell 114:305–310. DOI: https://doi.org/10.1016/S0304-3800(98)00162-8
Mendiola, D., Ibaibarriaga, L., and Alvarez, P. (2007). Thermal effects on growth and time to starvation during the yolk-sac larval period of Atlantic mackerel Scomber scombrus L. J Fish Biol 70;895–910. DOI: https://doi.org/10.1111/j.1095-8649.2007.01353.x
Michie, L. E., Hitchcock, J. N., Thiem, J. D., Boys, C. A., and Mitrovic, S. M. (2020). The effect of varied dam release mechanisms and storage volume on downstream river thermal regimes. Limnologica 81:125760. DOI: https://doi.org/10.1016/j.limno.2020.125760
Mischke CC, Dvorak GD, Morris JE, (2001). Growth and survival of hybrid Sunfish larvae in the laboratory under different feeding and temperature regimes. N Am J Aquacul 63:265–271. DOI: https://doi.org/10.1577/1548-8454(2001)063<0265:GASOHS>2.0.CO;2
Morrongiello, J. R., Beatty, S. J., Bennett, J. C., Crook, D. A., Ikedife, D. N. E. N., Kennard, M. J., Kerezsy, A., Lintermans, M., McNeil, D. G., Pusey, B. J., and Rayner, T. (2011). Climate change and its implications for Australia’s freshwater fish. Mar Freshwater Res 62:1082–1098. DOI: https://doi.org/10.1071/MF10308
Olden, J. D., and Naiman, R. J. (2010). Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biol 55:86–107. DOI: https://doi.org/10.1111/j.1365-2427.2009.02179.x
Pavlova, A., Beheregaray, L. B., Coleman, R., Gilligan, D., Harrisson, K. A., Ingram, B. A., Kearns, J., Lamb, A. M., Lintermans, M., Lyon, J., Nguyen, T. T. T., Sasaki, M., Tonkin, Z., Yen, J. D. L., and Sunnucks, P. (2017). Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: A call for assisted gene flow. Evol Appl 10:531–550. DOI: https://doi.org/10.1111/eva.12484
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., and Stromberg, J. C. (1997). The natural flow regime. BioScience 47:769–784. DOI: https://doi.org/10.2307/1313099
Preece, R. M., and Jones, H. A. (2002). The effect of Keepit Dam on the temperature regime of the Namoi River, Australia. River Res Appl 18:397–414. DOI: https://doi.org/10.1002/rra.686
Pusey, B. J., Arthington, A. H., and Read, M. G. (1998). Freshwater fishes of the Burdekin river, Australia: Biogeography, history and spatial variation in community structure. Environ Biol Fish 53:303–318. DOI: https://doi.org/10.1023/A:1007468417947
Raymond, S. M. (2007). The toxicity of pulse-exposed insecticides and their mixtures on Melanotaenia fluviatilis and Daphnia carinata. PhD Thesis, Royal Melbourne Institute of Technology.
Reid, H. P., and Holdway, D. A. (1995). Early development of the Australian crimson-spotted rainbowfish, Melanotaenia fluviatilis (Pisces: Melanotaeniidae). Mar Freshwater Res 46:475–480. DOI: https://doi.org/10.1071/MF9950475
Rolls, R. J., Growns, I. O., Khan, T. A., Wilson, G. G., Ellison, T. L., Prior, A., and Waring, C. C. (2013). Fish recruitment in rivers with modified discharge depends on the interacting effects of flow and thermal regimes. Freshwater Biol 58:1804–1819. DOI: https://doi.org/10.1111/fwb.12169
Rowland, S. J. (1988). Hormone-induced spawning of the Australian freshwater fish Murray cod, Maccullochella peeli (Mitchell) (Percichthyidae). Aquaculture 70:371–389. DOI: https://doi.org/10.1016/0044-8486(88)90121-4
Rowland, S. J. (1989). Aspects of the history and fishery of the Murray Cod, Maccullochella peelii (Mitchell)(Percichthyidae). P Linn Soc N S W 111:202–213.
Rowland, S. J. (2005). Overview of the history, fishery, biology and aquaculture of Murray cod (Maccullochella peelii peelii). Management of Murray Cod in the Murray-Darling Basin - Canberra Workshop 2004, p. 38–61.
Ryall, J. (2017). Effect of cold water on eggs and larvae of Murray River rainbowfish (Melanotaenia fluviatilis). Hons. Thesis, School of Life and Environmental Sciences, Deakin University.
Ryan, T., Lennie, R., Lyon, J., O’Brien, T. (2003). Thermal rehabilitation of the Southern Murray-Darling Basin final report to Agriculture, Forestry, Fisheries Australia MD 2001 Fish Rehab Program. Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment, Melbourne, Victoria, Australia.
Ryan, T., Webb, A., Lennie, R., and Lyon, J. P. (2001). Status of cold water releases from Victorian Dams. Report produced for Catchment and Water, Department of Natural Resources and Environment. Arthur Rylah Institute for Environmental Research, Melbourne, Victoria, Australia.
Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol 218:1856–1866. DOI: https://doi.org/10.1242/jeb.118851
Sherman, B., Todd, C. R., Koehn, J. D., and Ryan, T. (2007). Modelling the impact and potential mitigation of cold water pollution on Murray cod populations downstream of Hume Dam, Australia. River Res Appl 23:377–389. DOI: https://doi.org/10.1002/rra.994
Sifa, L., and Mathias, J. (1987). The critical period of high mortality of larvae fish – A discussion based on current research. Chin J Oceanol Limnol 5:80–96. DOI: https://doi.org/10.1007/BF02848526
Sokal, R. R., and Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. 3rd Edition. W.H. Freeman and Co., New York.
Somarakis, S., and Nikolioudakis, N. (2010). What makes a late anchovy larva? The development of the caudal fin seen as a milestone in fish ontogeny. J Plankton Res 32:317–326. DOI: https://doi.org/10.1093/plankt/fbp132
Song, Y., Cheng, F., Murphy, B.R., and Xie, S. (2018). Downstream effects of the Three Gorges Dam on larval dispersal, spatial distribution and growth of the four major Chinese carps call for reprioritizing conservation measures. Can J Fish Aquat Sci 75:141-151. DOI: https://doi.org/10.1139/cjfas-2016-0278
Taylor, C. M., and Warren Jr., M. L. (2001). Dynamics in species composition of stream fish assemblages: Environmental variability and nested subsets. Ecology 82:2320–2330. DOI: https://doi.org/10.1890/0012-9658(2001)082[2320:DISCOS]2.0.CO;2
Todd, C. R., Ryan, T., Nicol, S. J., and Bearlin, A. R. (2005). The impact of cold water releases on the critical period of post-spawning survival and its implications for Murray cod (Maccullochella peelii peelii): A case study of the Mitta Mitta River, southeastern Australia. River Res Appl 21:1035–1052. DOI: https://doi.org/10.1002/rra.873
Tonkin, Z., Lyon, J., and Pickworth, A. (2009). An assessment of spawning stocks, reproductive behaviour and habitat use of Macquarie Perch Macquaria australasica in Lake Dartmouth, Victoria. Technical Report Series number 188, Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment, Melbourne, Victoria, Australia.
Tonkin, Z., Lyon, J., Ramsey, D. S., Bond, N. R., Hackett, G., Krusic-Golub, K., Ingram, B. A., and Balcombe, S. R. (2014). Reservoir refilling enhances growth and recruitment of an endangered remnant riverine fish. Can J Fish Aquat Sci 71:1888–1899. DOI: https://doi.org/10.1139/cjfas-2014-0081
Tonkin, Z., Kearns, J., O’Mahoney, J., and Mahoney, J. (2016). Spatio-temporal spawning patterns of two riverine populations of the threatened Macquarie Perch (Macquaria australasica). Mar Freshwater Res 67:1762-1770. DOI: https://doi.org/10.1071/MF15319
Tonkin, Z., Kitchingman, A., Fanson, B., Lyon, J., Ayres, R., Sharley, J., Koster, W., O’Mahony, J., Hackett, G., Reich, P., and Hale, R. (2020). Quantifying links between instream woody habitat and freshwater fish species in south eastern Australia to inform waterway restoration. Aquati Conserv 30:1385–1396. DOI: https://doi.org/10.1002/aqc.3352
Torgersen, C. E., Baxter, C. V., Li, H. W., and McIntosh, B. A. (2006). Landscape influences on longitudinal patterns of river fishes: spatially continuous analysis of fish-habitat relationships, p. 473-492. In: R.M. Hughes, L. Wang and P.W. Seelbach (eds.), Landscape influences on stream habitats and biological assemblages. American Fisheries Society, Bethesda.
Trip, E. D. L., Clements, K. D., Raubenheimer, D., and Choat, J. H. (2014). Temperature-related variation in growth rate, size, maturation and life span in a marine herbivorous fish over a latitudinal gradient. J Am Ecol 83:866–875. DOI: https://doi.org/10.1111/1365-2656.12183
Trueman, W. (2012). ‘True Tales of the Trout Cod: River Histories of the Murray–Darling Basin.’ Murray–Darling Basin Authority: Canberra, ACT, Australia.
VanDeHey, J. A., Kaemingk, M. A., Jansen, A. C., Graeb, B. D. S., Dembkowski, D. J., and Willis, D. W. (2013). Effects of simulated cold fronts on the survival and behaviour of yellow perch Perca flavescens yolk-sac fry. J Appl Ichthyol 29:364–367. DOI: https://doi.org/10.1111/jai.12115
Van Looy, K., Tormos, T., and Souchon, Y. (2014). Disentangling dam impacts in river networks. Ecol Indic 37:10-20. DOI: https://doi.org/10.1016/j.ecolind.2013.10.006
Vinson, M. R. (2001). Long-term dynamics of an invertebrate assemblage downstream from a large dam. Ecol Appl 11:711. DOI: https://doi.org/10.1890/1051-0761(2001)011[0711:LTDOAI]2.0.CO;2
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature 467:555–561. DOI: https://doi.org/10.1038/nature09440
Walker, K. F., and Thoms, M. C. (1993). Environmental effects of flow regulation on the lower river Murray, Australia. Regul Rivers 8:103–119. DOI: https://doi.org/10.1002/rrr.3450080114
Ward, J. V. (1998). Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biol Conserv 83:269–278. DOI: https://doi.org/10.1016/S0006-3207(97)00083-9
Whiterod, N. S. (2013). The swimming capacity of juvenile Murray cod (Maccullochella peelii): An ambush predator endemic to the Murray-Darling Basin, Australia. Ecol Freshwater Fish 22:117–126. DOI: https://doi.org/10.1111/eff.12009
Whiterod, N. S., Meredith, S. N., Humphries, P., Sherman, B. S., Koehn, J. D., Watts, R. J., Ingram, B. A., and Ryan, T. (2018). Flow alteration and thermal pollution depress modelled growth rates of an iconic riverine fish, the Murray cod Maccullochella peelii. Ecol Freshwater Fish 27:686–698. DOI: https://doi.org/10.1111/eff.12384
Winton, R. S., Calamita, E., and Wehrli, B. (2019). Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences 16:1657–1671. DOI: https://doi.org/10.5194/bg-16-1657-2019
Wood, S. N. (2003). Thin plate regression splines. J Roy Stat Soc B 65:95–114. DOI: https://doi.org/10.1111/1467-9868.00374
Wood, S., and Scheipl, F. (2016). gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. Available from: https://cran.r-project.org/web/packages/gamm4/gamm4.pdf
World Commission on Dams. (2000). Dams and development: A new framework for decision-making. The report of the world commission on dams. Earthscan Publications Ltd., London. DOI: https://doi.org/10.1108/emh.2001.12.4.444.2
Zuur, A. F., Ieno, E. N., and Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. DOI: https://doi.org/10.1111/j.2041-210X.2009.00001.x

Edited by

Pietro Volta, CNR-IRSA Verbania, Italy

How to Cite

Raymond, Scott, Jordi Ryall, John Koehn, Ben Fanson, Sarah Hill, Daniel Stoessel, Zeb Tonkin, et al. 2022. “Larval Fish Sensitivity to a Simulated Cold-Water Pulse Varies Between Species and Age”. Journal of Limnology 81 (1). https://doi.org/10.4081/jlimnol.2022.2056.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo