Modelling physical and ecological processes in medium-to-large deep European perialpine lakes: a review

Submitted: 9 June 2021
Accepted: 5 October 2021
Published: 13 October 2021
Abstract Views: 1126
PDF: 305
HTML: 124
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In this paper we review a significant sample of the modelling studies carried out on medium-to-large deep European perialpine lakes (MLDEPLs). The reviewed bibliographic corpus was obtained querying Elsevier’s Scopus® database with a tailored search string on 8 January 2021. Results were filtered, accepting only journal papers written in English dealing with natural lakes having surface area > 10 km2. A list of 75 works was obtained, published between 1986 and 2021. Most studies have been carried out on Swiss lakes (44 out of 75 papers), Lake Geneva being the most investigated environment. A significant positive correlation was found between lake surface area and volume and the number of dedicated papers, suggesting that scientific attention is higher for environments characterised by large dimensions and relevant socio-economic interests. Both the number of papers and their citation count have experienced an exponential growth in time, pointing to a rising interest in quantitative modelling applications, but also to the increasing availability and ease of use of numerical modelling tools. Among the 75 selected papers, 55 employ a hydrodynamic driver, used alone or coupled with an ecological module, while the remnant 20 works adopt an ecological-only model. Among the papers employing hydrodynamic models, the use of three-dimensional (3D) drivers is surprisingly slightly more frequent (28 papers) than that of one-dimensional (1D) ones (26 papers), with most 3D applications having been published in the last 2011-2020 decade (24 papers). This reflects the interest on the hydrodynamic processes leading to the observed spatial heterogeneities in the biochemical properties of the MLDEPLs. However, coupling of ecological modules with 3D hydrodynamic drivers, to directly simulate these phenomena, is still restricted (2 papers) compared to that of 1D hydrodynamic drivers (8 papers), due to calibration and computational difficulties, which could be strongly reduced by future research achievements. Nevertheless, 1D models allow performing long-term prognoses considering multiple climate change and watershed management scenarios, due to their much smaller computational burden. The largest group of works dealing with ecological-only models (6 papers) is dedicated to applications of phosphorus budget models, which can above all be used to forecast variations in lake productivity in response to changes in the availability of the limiting nutrient.

Graphical abstract

2041-graphical-abstract800.jpg

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Amadori M, Morini G, Piccolroaz S, Toffolon M, 2020. Involving citizens in hydrodynamic research: A combined local knowledge - numerical experiment on Lake Garda, Italy. Sci. Total Environ. 722:137720. DOI: https://doi.org/10.1016/j.scitotenv.2020.137720
Amadori M, Piccolroaz S, Giovannini L, Zardi D, Toffolon M, 2018. Wind variability and Earth’s rotation as drivers of transport in a deep, elongated subalpine lake: The case of Lake Garda. J. Limnol. 77:505-521. DOI: https://doi.org/10.4081/jlimnol.2018.1814
Ambrosetti W, Barbanti L, 1999. Deep water warming in lakes: an indicator of climatic change. J. Limnol. 58:1-9. DOI: https://doi.org/10.4081/jlimnol.1999.1
Ambrosetti W, Barbanti L, Rolla A, Castellano L, Sala N, 2012. Hydraulic paths and estimation of the real residence time of the water in Lago Maggiore (N. Italy): application of massless markers transported in 3D motion fields. J. Limnol. 71:23-33. DOI: https://doi.org/10.4081/jlimnol.2012.e2
Anneville O, Gammeter S, Straile D, 2005. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri‐alpine lakes. Freshwater Biol. 50:1731-1746. DOI: https://doi.org/10.1111/j.1365-2427.2005.01429.x
Anneville O, Souissi S, Gammeter S, Straile D, 2004. Seasonal and inter‐annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri‐alpine lakes over a period of 28 years. Freshwater Biol. 49:98-115. DOI: https://doi.org/10.1046/j.1365-2426.2003.01167.x
Baracchini T, Hummel S, Verlaan M, Cimatoribus A, Wüest A, Bouffard D, 2020. An automated calibration framework and open source tools for 3D lake hydrodynamic models. Environ. Modell. Softw. 134:104787. DOI: https://doi.org/10.1016/j.envsoft.2020.104787
Barontini S, Grossi G, Kouwen N, Maran S, Scaroni P, Ranzi R, 2009. Impacts of climate change scenarios on runoff regimes in the southern Alps. Hydrol. Earth Syst. Sci. Discuss. 6:3089-3141. DOI: https://doi.org/10.5194/hessd-6-3089-2009
Baudo R, 2002. Pollution and recovery of Lake Orta (Italy): Resilience at work? Aquat. Ecosyst. Health 5:71-78. DOI: https://doi.org/10.1080/14634980260199972
Bodrato M, Vione D, 2014. APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters. Environ. Sci.-Proc. Imp. 16:732-740. DOI: https://doi.org/10.1039/C3EM00541K
Bonvin F, Razmi AM, Barry DA, Kohn T, 2013. Micropollutant dynamics in Vidy Bay - A coupled hydrodynamic-photolysis model to assess the spatial extent of ecotoxicological risk. Environ. Sci. Technol. 47:9207-9216. DOI: https://doi.org/10.1021/es401294c
Bresciani M, Cazzaniga I, Austoni M, Sforzi T, Buzzi F, Morabito G, Giardino C, 2018. Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia 824:197-214. DOI: https://doi.org/10.1007/s10750-017-3462-2
Bruce LC, Frassl MA, Arhonditsis GB, et al., 2018. A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environ. Modell. Softw. 102:274-291. DOI: https://doi.org/10.1016/j.envsoft.2017.11.016
Bryhn AC, Girel C, Paolini G, Jacquet S, 2010. Predicting future effects from nutrient abatement and climate change on phosphorus concentrations in Lake Bourget, France. Ecol. Model. 221:1440-1450. DOI: https://doi.org/10.1016/j.ecolmodel.2010.02.013
Bueche T, Hamilton DP, Vetter M, 2017. Using the General Lake Model (GLM) to simulate water temperatures and ice cover of a medium-sized lake: a case study of Lake Ammersee, Germany. Environ. Earth Sci. 76:461. DOI: https://doi.org/10.1007/s12665-017-6790-7
Bueche T, Vetter M, 2014a. Influence of groundwater inflow on water temperature simulations of Lake Ammersee using a one-dimensional hydrodynamic lake model. Erdkunde 68:19-31. DOI: https://doi.org/10.3112/erdkunde.2014.01.03
Bueche T, Vetter M, 2014b. Simulating water temperatures and stratification of a pre-alpine lake with a hydrodynamic model: calibration and sensitivity analysis of climatic input parameters. Hydrol. Process. 28:1450-1464. DOI: https://doi.org/10.1002/hyp.9687
Bueche T, Vetter M, 2015. Future alterations of thermal characteristics in a medium-sized lake simulated by coupling a regional climate model with a lake model. Clim. Dyn. 44:371-384. DOI: https://doi.org/10.1007/s00382-014-2259-5
Bueche T, Wenk M, Poschlod B, Giadrossich F, Pirastru M, Vetter M, 2020. GlmGUI v1.0: an R-based graphical user interface and toolbox for GLM (General Lake Model) simulations. Geoscientific Model Dev. 13:565-580. DOI: https://doi.org/10.5194/gmd-13-565-2020
Buerge IJ, Poiger T, Müller MD, Buser H-R, 2003. Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ. Sci. Technol. 37:691-700. DOI: https://doi.org/10.1021/es020125z
Burger DF, Hamilton DP, Pilditch CA, 2008. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol. Model. 211: 411-423. DOI: https://doi.org/10.1016/j.ecolmodel.2007.09.028
Buwalda F, 2020. Suitability of shallow water solving methods for GPU acceleration. M.Sc. Thesis in Applied Mathematics, Delft University of Technology, Delft, Netherlands: 146 pp.
Calderoni A, Tartari GA, 2000. Evolution of the water chemistry of Lake Orta after liming. J. Limnol. 60:69-78. DOI: https://doi.org/10.4081/jlimnol.2001.69
Canuto VM, Howard A, Cheng Y, Dubovikov MS, 2001. Ocean Turbulence. Part I: One-Point Closure Model—Momentum and Heat Vertical Diffusivities. J. Phys. Oceanogr. 31:1413-1426. DOI: https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2
Caramatti I, Peeters F, Hamilton D, Hofmann H, 2020. Modelling inter-annual and spatial variability of ice cover in a temperate lake with complex morphology. Hydrol. Process. 34:691-704. DOI: https://doi.org/10.1002/hyp.13618
Carraro E, Guyennon N, Hamilton D, Valsecchi L, Manfredi EC, Viviano G, Salerno F, Tartari G, Copetti D, 2012. Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia 698:77-95. DOI: https://doi.org/10.1007/s10750-012-1096-y
Casulli V, Cheng RT, 1992. Semi‐implicit finite difference methods for three‐dimensional shallow water flow. Int. J. Numer. Meth. Fl. 15:629-648. DOI: https://doi.org/10.1002/fld.1650150602
CH2011, 2011. Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zurich, Switzerland: 88 pp.
Chapra SC, Reckow KH, 1983. Engineering Approaches for Lake Management ‒ Volume 2: Mechanistic Modelling. Butterworth Publishers, Boston, USA: 492 pp.
Christensen V, Pauly D, 1992. ECOPATH II — a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model. 61:169-185. DOI: https://doi.org/10.1016/0304-3800(92)90016-8
Cole TM., Wells SA, 2013. CE-QUAL-W2: a two-dimensional, laterally averaged, hydrodynamic and water quality model, Version 3.71. User Manual, U.S. Army Corps of Engineers, Washington.
Copetti D, Carniato L, Crise A, Guyennon N, Palmeri L, Pisacane G, Struglia M, Tartari G, 2013. Impacts of climate change on water quality, p. 307-332. In: A. Navarra and L. Tubiana (eds.), Regional Assessment of Climate Change in the Mediterranean. Springer. DOI: https://doi.org/10.1007/978-94-007-5781-3_10
Copetti D, Guyennon N, Buzzi F, 2020. Generation and dispersion of chemical and biological gradients in a large-deep multi-basin lake (Lake Como, north Italy): The joint effect of external drivers and internal wave motions. Sci. Total Environ. 749:141587. DOI: https://doi.org/10.1016/j.scitotenv.2020.141587
Costanza R, Duplisea D, Kautsky U, 1998. Ecological Modelling on modelling ecological and economic systems with STELLA. Ecol. Model. 110:1-4. DOI: https://doi.org/10.1016/S0304-3800(98)00039-8
Cuypers Y, Vinçon-Leite B, Groleau A, Tassin B, Humbert J-F, 2011. Impact of internal waves on the spatial distribution of Planktothrix rubescens (cyanobacteria) in an alpine lake. ISME J. 5:580-589. DOI: https://doi.org/10.1038/ismej.2010.154
Cyr H, 2017. Winds and the distribution of nearshore phytoplankton in a stratified lake. Water Res. 122:114-127. DOI: https://doi.org/10.1016/j.watres.2017.05.066
Danis P-A, von Grafenstein U, Masson-Delmotte V, Planton S, Gerdeaux D, Moisselin J-M, 2004. Vulnerability of two European lakes in response to future climatic changes. Geophys. Res. Lett. 31:L21507. DOI: https://doi.org/10.1029/2004GL020833
Derot J, Yajima H, Jacquet S, 2020. Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva. Harmful Algae 99:101906. DOI: https://doi.org/10.1016/j.hal.2020.101906
Dietzel A, Mieleitner J, Kardaetz S, Reichert P, 2013. Effects of changes in the driving forces on water quality and plankton dynamics in three Swiss lakes – long-term simulations with BELAMO. Freshwater Biol. 58:10-35. DOI: https://doi.org/10.1111/fwb.12031
Dietzel A, Reichert P, 2012. Calibration of computationally demanding and structurally uncertain models with an application to a lake water quality model. Environ. Modell. Softw. 38:129-146. DOI: https://doi.org/10.1016/j.envsoft.2012.05.007
Dissanayake P, Hofmann H, Peeters F, 2019. Comparison of results from two 3D hydrodynamic models with field data: internal seiches and horizontal currents. Inland Waters 9:239-260. DOI: https://doi.org/10.1080/20442041.2019.1580079
Dueri S, Castro-Jiménez J, Zaldívar J-M, 2009. Modelling the influence of thermal stratification and complete mixing on the distribution and fluxes of polychlorinated biphenyls in the water column of Ispra Bay (Lake Maggiore). Chemosphere 75:1266-1272. DOI: https://doi.org/10.1016/j.chemosphere.2009.01.066
Enz CA, Müller R, Mbwenemo Bia M, Heeb J, 2002. A population dynamics model for evaluating mortality factors in whitefish (Coregonus suidteri) larvae in Lake Hallwil. Adv. Limnol. 57:343-358.
Fenocchi A, Petaccia G, Sibilla S, 2016. Modelling flows in shallow (fluvial) lakes with prevailing circulations in the horizontal plane: limits of 2D compared to 3D models. J. Hydroinform. 18:928-945. DOI: https://doi.org/10.2166/hydro.2016.033
Fenocchi A, Rogora M, Marchetto A, Sibilla S, Dresti C, 2020. Model simulations of the ecological dynamics induced by climate and nutrient load changes for deep subalpine Lake Maggiore (Italy/Switzerland). J. Limnol. 79:221-237. DOI: https://doi.org/10.4081/jlimnol.2020.1963
Fenocchi A, Rogora M, Morabito G, Marchetto A, Sibilla S, Dresti C, 2019. Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland). Ecol. Model. 392:38-51. DOI: https://doi.org/10.1016/j.ecolmodel.2018.11.005
Fenocchi A, Rogora M, Sibilla S, Ciampittiello M, Dresti C, 2018. Forecasting the evolution in the mixing regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland). Clim. Dyn. 51:3521-3536. DOI: https://doi.org/10.1007/s00382-018-4094-6
Fenocchi A, Rogora M, Sibilla S, Dresti C, 2017. Relevance of inflows on the thermodynamic structure and on the modeling of a deep subalpine lake (Lake Maggiore, Northern Italy/Southern Switzerland). Limnologica 63:42-56. DOI: https://doi.org/10.1016/j.limno.2017.01.006
Finger D, Wüest A, Bossard P, 2013. Effects of oligotrophication on primary production in peri-alpine lakes. Water Resour. Res. 49:4700-4710. DOI: https://doi.org/10.1002/wrcr.20355
Fornarelli R, Galelli S, Castelletti A, Antenucci JP, Marti CL, 2013. An empirical modeling approach to predict and understand phytoplankton dynamics in a reservoir affected by interbasin water transfers. Water Resour. Res. 49:3626-3641. DOI: https://doi.org/10.1002/wrcr.20268
Fragoso CR, Motta Marques DML, Collischonn W, Tucci CEM, van Nes EH, 2008. Modelling spatial heterogeneity of phytoplankton in Lake Mangueira, a large shallow subtropical lake in South Brazil. Ecol. Model. 219:125-137. DOI: https://doi.org/10.1016/j.ecolmodel.2008.08.004
Franchini F, Lepori F, Bruder A, 2017. Improving estimates of primary production in lakes: a test and a case study from a peri-alpine lake (Lake Lugano). Inland Waters 7:77-87. DOI: https://doi.org/10.1080/20442041.2017.1294351
Fringer OB, Gerritsen M, Street RL, 2006. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model. 14:139-173. DOI: https://doi.org/10.1016/j.ocemod.2006.03.006
Gallina N, Beniston M, Jacquet S, 2017. Estimating future cyanobacterial occurrence and importance in lakes: a case study with Planktothrix rubescens in Lake Geneva. Aquat. Sci. 79:249-263. DOI: https://doi.org/10.1007/s00027-016-0494-z
Gallina N, Salmaso N, Morabito G, Beniston M., 2013. Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Aquat. Ecol. 47:177-193. DOI: https://doi.org/10.1007/s10452-013-9433-4
García-Nieto PJ, García-Gonzalo E, Alonso Fernández JR, Díaz Muñiz C, 2018. Predictive modelling of eutrophication in the Pozón de la Dolores lake (Northern Spain) by using an evolutionary support vector machines approach. J. Math. Biol. 76:817-840. DOI: https://doi.org/10.1007/s00285-017-1161-2
Gaudard A, Räman Vinnä L, Bärenbold F, Schmid M, Bouffard D, 2019a. Toward an open access to high-frequency lake modeling and statistics data for scientists and practitioners – the case of Swiss lakes using Simstrat v2.1. Geosci. Model Dev. 12:3955-3974. DOI: https://doi.org/10.5194/gmd-12-3955-2019
Gaudard A, Wüest A, Schmid M, 2019b. Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials. Renew. Energy 134:330-342. DOI: https://doi.org/10.1016/j.renene.2018.10.095
Goudsmit G, Burchard H, Peeters, F, Wüest A, 2002. Application of k‐ɛ turbulence models to enclosed basins: The role of internal seiches. J. Geophys. Res. 107:23. DOI: https://doi.org/10.1029/2001JC000954
Gulliver JS, Stefan HG, 1982. Lake phytoplankton model with destratification. J. Env. Eng. Div.-ASCE 108:864-882. DOI: https://doi.org/10.1061/JEEGAV.0001348
Guyennon N, Valerio G, Salerno F, Pilotti M, Tartari G, Copetti D, 2014. Internal wave weather heterogeneity in a deep multi-basin subalpine lake resulting from wavelet transform and numerical analysis. Adv. Water Resour. 71:149-161. DOI: https://doi.org/10.1016/j.advwatres.2014.06.013
Hamilton DP, Schladow SG, 1997. Prediction of water quality in lakes and reservoirs. Part I — Model description. Ecol. Model. 96:91-110. DOI: https://doi.org/10.1016/S0304-3800(96)00062-2
Henderson-Sellers B, 1986. Calculating the surface energy balance for lake and reservoir modelling: A review. Rev. Geophys. 24:625-649. DOI: https://doi.org/10.1029/RG024i003p00625
Hipsey MR, Bruce LC, Boon C, Busch B, Carey CC, Hamilton DP, Hanson PC, Read JS, De Sousa E, Weber M, Winslow LA, 2019. A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geosci. Model Dev. 12:473-523. DOI: https://doi.org/10.5194/gmd-12-473-2019
Hipsey MR, Bruce LC, Hamilton DP, 2013. Aquatic EcoDynamics (AED) model library: science manual. AED Report. The University of Western Australia, Perth, Australia: 34 pp.
Hodges BR, Imberger J, Saggio A, Winters KB, 2000. Modeling basin-scale internal waves in a stratified lake. Limnol. Oceanogr. 45:1603-1620. DOI: https://doi.org/10.4319/lo.2000.45.7.1603
Huang J, Gao J, Hörmann G, 2012. Hydrodynamic-phytoplankton model for short-term forecasts of phytoplankton in Lake Taihu, China. Limnologica 42:7-18. DOI: https://doi.org/10.1016/j.limno.2011.06.003
Huang J, Gao J, Hörmann G, Fohrer N, 2014. Modeling the effects of environmental variables on short-term spatial changes in phytoplankton biomass in a large shallow lake, Lake Taihu. Environ. Earth Sci. 72:3609-3621. DOI: https://doi.org/10.1007/s12665-014-3272-z
Huszar VLM., Caraco NF, Roland F, Cole J, 2006. Nutrient–chlorophyll relationships in tropical–subtropical lakes: do temperate models fit? Biogeochemistry 79:239-250. DOI: https://doi.org/10.1007/s10533-006-9007-9
Hutter K, 1984. Hydrodynamics of lakes. CISM Courses and Lectures No. 286, Springer-Verlag, Wien: 341 pp. DOI: https://doi.org/10.1007/978-3-7091-2634-9
Ibelings BW, Vonk M, Los HFJ, van der Molen DT, Mooij WM, 2003. Fuzzy modeling of cyanobacterial surface water blooms: validation with NOAA-AVHRR satellite images. Ecol. Appl. 13:1456-1472. DOI: https://doi.org/10.1890/01-5345
Imberger J, Loh I, Hebbert B, Patterson J, 1978. Dynamics of reservoir of medium size. J. Hydraul. Eng. Div.-ASCE 104:725-743. DOI: https://doi.org/10.1061/JYCEAJ.0004997
Imberger J, Patterson JC, 1981. A dynamic reservoir simulation model – DYRESM: 5, p. 310-361. In: H.B. Fischer (ed.), Transport Models for Inland and Coastal Waters. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-258152-6.50014-2
Jacob D, Bärring L, Christensen O, Christensen J, Castro M, Déqué M, Giorgi F, Hagermann S, Hirshi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sànchez E, Schär C, Seneviratne SI, Somot S, val Ulden A, van den Hurk B, 2007. An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim. Change 81:31-52. DOI: https://doi.org/10.1007/s10584-006-9213-4
Janjua MY, Gerdeaux D, 2009. Preliminary trophic network analysis of subalpine Lake Annecy (France) using an Ecopath model. Knowl. Manag. Aquat. Ec. 392:02. DOI: https://doi.org/10.1051/kmae/2009008
Joehnk KD, Umlauf L, 2001. Modelling the metalimnetic oxygen minimum in a medium sized alpine lake. Ecol. Model. 136:67-80. DOI: https://doi.org/10.1016/S0304-3800(00)00381-1
Jung N-C, Popescu I, Kelderman P, Solomatine DP, Price RK, 2010. Application of model trees and other machine learning techniques for algal growth prediction in Yongdam reservoir, Republic of Korea. J. Hydroinf. 12:262-274. DOI: https://doi.org/10.2166/hydro.2009.004
Jurado E, Zaldívar J-M, Marinov D, Dachs J, 2007. Fate of persistent organic pollutants in the water column: Does turbulent mixing matter? Mar. Pollut. Bull. 54:441-451. DOI: https://doi.org/10.1016/j.marpolbul.2006.11.028
Kara EM, Hanson P, Hamilton D, et al., 2012. Time-scale dependence in numerical simulations: assessment of physical, chemical and biological predictions in a stratified lake at temporal scales of hours to months. Environ. Modell. Softw. 35:104-121. DOI: https://doi.org/10.1016/j.envsoft.2012.02.014
Kerimoglu O, Jacquet S, Vinçon-Leite B, Lemaire BJ, Rimet F, Soulignac F, Trévisan D, Anneville O, 2017. Modelling the plankton groups of the deep, peri-alpine Lake Bourget. Ecol. Model. 359:415-433. DOI: https://doi.org/10.1016/j.ecolmodel.2017.06.005
Kiefer I, Odermatt D, Anneville O, Wüest A, Bouffard D, 2015. Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake. Sci. Total Environ. 527-528:493-506. DOI: https://doi.org/10.1016/j.scitotenv.2015.05.011
Koschel R, Benndorf J, Proft G, Recknagel F, 1983. Calcite precipitation as a natural control mechanism of eutrophication. Arch. Hydrobiol. 98:380-408.
Krishna S, Ulloa HN, Kerimoglu O, Minaudo C, Anneville O, Wüest A, 2021. Model-based data analysis of the effect of winter mixing on primary production in a lake under reoligotrophication. Ecol. Model. 440:109401. DOI: https://doi.org/10.1016/j.ecolmodel.2020.109401
Laborde S, Antenucci JP, Copetti D, Imberger J, 2010. Inflow intrusions at multiple scales in a large temperate lake. Limnol. Oceanogr. 55:1301-1312. DOI: https://doi.org/10.4319/lo.2010.55.3.1301
Laborde S, Imberger J, Toussaint S, 2012. Contributions of local knowledge to the physical limnology of Lake Como, Italy. Proc. Natl. Acad. Sci. U.S.A. 109:6441-6445. DOI: https://doi.org/10.1073/pnas.1113740109
Lemaire M, Guillard J, Anneville O, Lobry J, 2020. Major biomass fluctuations in lake food webs – An example in the peri-alpine Lake Annecy. J. Great Lakes Res. 46:798-812. DOI: https://doi.org/10.1016/j.jglr.2020.04.007
Lepori F, Roberts JJ, 2015. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers? J. Great Lakes Res. 41:973-981. DOI: https://doi.org/10.1016/j.jglr.2015.08.004
Lepori F, Roberts JJ, 2017. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication. J. Great Lakes Res. 43:255-264. DOI: https://doi.org/10.1016/j.jglr.2017.01.008
Lesser GR, Roelvink, JA, van Kester JATM, Stelling GS, 2004. Development and validation of a three-dimensional morphological model. Coast. Eng. 51:883-915. DOI: https://doi.org/10.1016/j.coastaleng.2004.07.014
Livingstone DM, 2003. Impact of secular climate change on the thermal structure of a large temperate Central European lake. Clim. Change 57:205-225. DOI: https://doi.org/10.1023/A:1022119503144
Los FJ, Villars MT, Van der Tol MWM, 2008. A 3-dimensional primary production model (BLOOM/GEM) and its applications to the (southern) North Sea (coupled physical–chemical–ecological model). J. Marine Syst. 74:259-294. DOI: https://doi.org/10.1016/j.jmarsys.2008.01.002
Luyten PJ, Jones JE, Proctor R, Tabor A, Tett P, Wild-Allen K, 1999. COHERENS – A coupled hydrodynamical-ecological model for regional and shelf areas: User documentation. MUMM Report, Management Unit of the Mathematical Models of the North Sea, Brussels, Belgium: 914 pp.
Mari L, Biotto C, Decoene A, Bonaventura L, 2009. A coupled ecological-hydrodynamic model for the spatial distribution of sessile aquatic species in thermally forced basins. Ecol. Model. 220:2310-2324. DOI: https://doi.org/10.1016/j.ecolmodel.2009.05.012
Mellor GL, Yamada T, 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20:851-875. DOI: https://doi.org/10.1029/RG020i004p00851
Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O, 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7:13603. DOI: https://doi.org/10.1038/ncomms13603
Minella M, Leoni B, Salmaso N, Savoye L, Sommaruga R, Vione D, 2016. Long-term trends of chemical and modelled photochemical parameters in four Alpine lakes. Sci. Total Environ. 541:247-256. DOI: https://doi.org/10.1016/j.scitotenv.2015.08.149
Mirbach S, Lang U, 2018. Density-driven underflows with suspended solids in Lake Constance. J. Soils Sed. 18:3145-3152. DOI: https://doi.org/10.1007/s11368-017-1753-x
Morillo S, Imberger J, Antenucci JP, Copetti D, 2009. Using impellers to distribute local nutrient loadings in a stratified lake: Lake Como, Italy. J. Hydraul. Eng.-ASCE 135:564-574. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000048
Moschet C, Götz C, Longrée P, Hollender J, Singer H, 2013. Multi-level approach for the integrated assessment of polar organic micropollutants in an international lake catchment: The example of Lake Constance. Environ. Sci. Technol. 47:7028-7036. DOI: https://doi.org/10.1021/es304484w
Müller B, Gächter R, Wüest A, 2014. Accelerated water quality improvement during oligotrophication in peri-alpine lakes. Environ. Sci. Technol. 48:6671-6677. DOI: https://doi.org/10.1021/es4040304
Neumann T, Fennel W, Kremp C, 2002. Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment. Glob. Biogeochem. Cycles 16:7. DOI: https://doi.org/10.1029/2001GB001450
Nouchi V, Kutser T, Wüest A, Müller B, Odermatt D, Baracchini T, Bouffard D, 2019. Resolving biogeochemical processes in lakes using remote sensing. Aquat. Sci. 81:27. DOI: https://doi.org/10.1007/s00027-019-0626-3
Nyholm N, 1978. A simulation model for phytoplankton growth and nutrient cycling in eutrophic, shallow lakes. Ecol. Model. 4:279-310. DOI: https://doi.org/10.1016/0304-3800(78)90011-X
Nürnberg GK, 1998. Prediction of annual and seasonal phosphorus concentrations in stratified and polymictic lakes. Limnol. Oceanogr. 43:1544-1552. DOI: https://doi.org/10.4319/lo.1998.43.7.1544
Oman G, 1982. [Das Verhalten des geschichteten Zürichsees unter äusseren Windlasten]. [Report in German]. Mitteilung Nr. 60 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Zürich, Switzerland: 202 pp.
Omlin M, Brun R, Reichert P, 2001a. Biogeochemical model of Lake Zürich: sensitivity, identifiability and uncertainty analysis. Ecol. Model. 141:105-123. DOI: https://doi.org/10.1016/S0304-3800(01)00257-5
Omlin M, Reichert P, Forster R, 2001b. Biogeochemical model of Lake Zürich: model equations and results. Ecol. Model. 141:77-103. DOI: https://doi.org/10.1016/S0304-3800(01)00256-3
Oveisy A, Boegman L, Imberger J, 2012. Three-dimensional simulation of lake and ice dynamics during winter. Limnol. Oceanogr. 57:43-57. DOI: https://doi.org/10.4319/lo.2012.57.1.0043
Panizzuti M, Tartari G, 1995. pH simulation model in a mixed layer of a lacustrine environment (the case of Lake Orta). Ecol. Model. 78:37-49. DOI: https://doi.org/10.1016/0304-3800(94)00116-Y
Patterson JC, Hamblin PF, 1988. Thermal simulation of a lake with winter ice cover. Limnol. Oceanogr. 33:323-338. DOI: https://doi.org/10.4319/lo.1988.33.3.0323
Paerl HW, Paul VJ, 2012. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 46:1349-1363. DOI: https://doi.org/10.1016/j.watres.2011.08.002
Peeters F, Livingstone DM, Goudsmit G-H, Kipfer R, Forster R, 2002. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 47:186-197. DOI: https://doi.org/10.4319/lo.2002.47.1.0186
Perroud M, Goyette S, Martynov A, Beniston M, Anneville O, 2009. Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one-dimensional lake models. Limnol. Oceanogr. 54:1574-1594. DOI: https://doi.org/10.4319/lo.2009.54.5.1574
Piccolroaz S, Amadori M, Toffolon M, Dijkstra HA, 2019. Importance of planetary rotation for ventilation processes in deep elongated lakes: Evidence from Lake Garda (Italy). Sci. Rep. 9:8290. DOI: https://doi.org/10.1038/s41598-019-44730-1
Pilotti M, Simoncelli S, Valerio G, 2014a. A simple approach to the evaluation of the actual water renewal time of natural stratified lakes. Water Resour. Res. 50:2830-2849. DOI: https://doi.org/10.1002/2013WR014471
Pilotti M, Valerio G, Gregorini L, Milanesi L, Hogg CAR, 2014b. Study of tributary inflows in Lake Iseo with a rotating physical model. J. Limnol. 73:115-129. DOI: https://doi.org/10.4081/jlimnol.2014.772
Pinardi M, Fenocchi A, Giardino C, Sibilla S, Bartoli M, Bresciani M, 2015. Assessing potential algal blooms in a shallow fluvial lake by combining hydrodynamic modelling and remote-sensed images. Water 7:1921-1942. DOI: https://doi.org/10.3390/w7051921
Posch T, Köster O, Salcher MM, Pernthaler J, 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2:809-813. DOI: https://doi.org/10.1038/nclimate1581
Råman Vinnå L, Bouffard D, Wüest A, Girardclos S, Dubois N, 2020. Assessing subaquatic mass movement hazards: an integrated observational and hydrodynamic modelling approach. Water Resour. Manag. 34:4133-4146. DOI: https://doi.org/10.1007/s11269-020-02660-y
Råman Vinnå L, Wüest A, Bouffard D, 2017. Physical effects of thermal pollution in lakes. Water Resour. Res. 53:3968-3987. DOI: https://doi.org/10.1002/2016WR019686
Razmi AM, Barry DA, Bakhtyar R, Le Dantec N, Dastgheib A, Lemmin U, Wüest A, 2013. Current variability in a wide and open lacustrine embayment in Lake Geneva (Switzerland). J. Great Lakes Res. 39:455-465. DOI: https://doi.org/10.1016/j.jglr.2013.06.011
Razmi AM, Barry DA, Lemmin U, Bonvin F, Kohn T, Bakhtyar R, 2014. Direct effects of dominant winds on residence and travel times in the wide and open lacustrine embayment: Vidy Bay (Lake Geneva, Switzerland). Aquat. Sci. 76:59-71. DOI: https://doi.org/10.1007/s00027-013-0321-8
Reichert P, 1994. AQUASIM – A tool for simulation and data analysis of aquatic systems. Water Sci. Technol. 30:21-30. DOI: https://doi.org/10.2166/wst.1994.0025
Riley MJ, Stefan HG, 1988. Minlake: A dynamic lake water quality simulation model. Ecol. Model. 43:155-182. DOI: https://doi.org/10.1016/0304-3800(88)90002-6
Rinke K, Yeates P, Rothhaupt K-O, 2010. A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshwater Biol. 55:1674-1693. DOI: https://doi.org/10.1111/j.1365-2427.2010.02401.x
Rogora M, Buzzi F, Dresti C, Leoni B, Lepori F, Mosello R, Patelli M, Salmaso N, 2018. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia 824:33-50. DOI: https://doi.org/10.1007/s10750-018-3623-y
Rossi G, Premazzi G, Marengo G, 1986. Correlation of a lake eutrophication model to field experiments. Ecol. Model. 34:167-189. DOI: https://doi.org/10.1016/0304-3800(86)90002-5
Saha GC, Felix M, Li J, Thring RW, 2011. Seasonal stratification effects on risk quantification of contaminant spreading in a warm monomictic lake under different hydrodynamic conditions: a case study in Lake Constance, Germany. Int. J. Risk Assess. Manag. 15:79-93. DOI: https://doi.org/10.1504/IJRAM.2011.041005
Salmaso N, 2019. Effects of habitat partitioning on the distribution of bacterioplankton in deep lakes. Front. Microbiol. 10:2257. DOI: https://doi.org/10.3389/fmicb.2019.02257
Salmaso N, Anneville O, Straile D, Viaroli P, 2018. European large perialpine lakes under anthropogenic pressures and climate change: present status, research gaps and future challenges. Hydrobiologia 824:1-32. DOI: https://doi.org/10.1007/s10750-018-3758-x
Salmaso N, Buzzi F, Capelli C, Cerasino L, Leoni B, Lepori F, Rogora M, 2020. Responses to local and global stressors in the large southern perialpine lakes: Present status and challenges for research and management. J. Great Lakes Res. 46:752-766. DOI: https://doi.org/10.1016/j.jglr.2020.01.017
Salmaso N, Buzzi F, Cerasino L, Garibaldi L, Leoni B, Morabito G, Rogora M, Simona M, 2014. Influence of atmospheric modes of variability on the limnological characteristics of large lakes south of the Alps: a new emerging paradigm. Hydrobiologia 731:31-48. DOI: https://doi.org/10.1007/s10750-013-1659-6
Salmaso N, Morabito G, Mosello R, Garibaldi L, Simona M, Buzzi F, Ruggiu D, 2003. A synoptic study of phytoplankton in the deep lakes south of the Alps (lakes Garda, Iseo, Como, Lugano and Maggiore). J. Limnol. 62:207-227. DOI: https://doi.org/10.4081/jlimnol.2003.207
Salmaso N, Mosello R, Garibaldi L, Decet F, Brizzio MC, Cordella P, 2003. Vertical mixing as a determinant of trophic status in deep lakes: a case study from two lakes south of the Alps (Lake Garda and Lake Iseo). J. Limnol. 62:33-41. DOI: https://doi.org/10.4081/jlimnol.2003.s1.33
Salmaso N, Mosello R, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Adv. Oceanogr. Limn. 1:29-66. DOI: https://doi.org/10.1080/19475721003735773
Salvadè G, Stocker K, Trösch J, Zamboni F, 1992. Hydrodynamics of Lake Lugano. Aquat. Sci. 54:187-204. DOI: https://doi.org/10.1007/BF00878136
Schauser I, Hupfer M, Brüggemann R, 2004. SPIEL—a model for phosphorus diagenesis and its application to lake restoration. Ecol. Model. 176:389-407. DOI: https://doi.org/10.1016/j.ecolmodel.2003.10.033
Schauser I, Hupfer M, Brüggemann R, 2006. Sensitivity analysis with a phosphorus diagenesis model (SPIEL). Ecol. Model. 190:87-98. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.024
Scheu KR, Fong D, Monismith SG, Fringer OB, 2018. Modeling sedimentation dynamics of sediment-laden river intrusions in a rotationally-influenced, stratified lake. Water Resour. Res. 54:4084-4107. DOI: https://doi.org/10.1029/2017WR021533
Schlabing D, Frassl MA, Eder MM, Rinke K, Bàrdossy A, 2014. Use of a weather generator for simulating climate change effects on ecosystems: A case study on Lake Constance. Environ. Modell. Softw. 61:326-338. DOI: https://doi.org/10.1016/j.envsoft.2014.06.028
Schwefel R, Steinsberger T, Bouffard D, Bryant LD, Müller B, Wüest A, 2018. Using small-scale measurements to estimate hypolimnetic oxygen depletion in a deep lake. Limnol. Oceanogr. 63:S54-S67. DOI: https://doi.org/10.1002/lno.10723
Simons TJ, 1981. The seasonal climate of the Upper Ocean: data analysis and model development. Technical Report. National Water Research Institute, Burlington: 72 pp.
Skamarock WC, Klemp JB, 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227:3465-3485. DOI: https://doi.org/10.1016/j.jcp.2007.01.037
Soulignac F, Danis P-A, Bouffard D, Chanudet V, Dambrine E, Guénand Y, Harmel T, Ibelings BW, Trevisan D, Uittenbogaard R, Anneville O, 2018. Using 3D modeling and remote sensing capabilities for a better understanding of spatio-temporal heterogeneities of phytoplankton abundance in large lakes. J. Great Lakes Res. 44:756-764. DOI: https://doi.org/10.1016/j.jglr.2018.05.008
Spekat A, Kreienkamp F, Enke W, 2010. An impact-oriented classification method for atmospheric patterns. Phys. Chem. Earth 35:352-359. DOI: https://doi.org/10.1016/j.pce.2010.03.042
Spraggs JD, Street RL, 1975. Three-dimensional simulation of thermally-influenced hydrodynamic flows. Technical Report Nr. 190, Department of Civil Engineering, Stanford University, Stanford: 339 pp.
Stelling GS, Duinmeijer SPA, 2003. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fl. 43:1329-1354. DOI: https://doi.org/10.1002/fld.537
Straile D, Kerimoglu O, Peeters F, 2015. Trophic mismatch requires seasonal heterogeneity of warming. Ecology 96:2794-2805. DOI: https://doi.org/10.1890/14-0839.1
Tiberti R, Caroni R, Cannata M, Lami A, Manca D, Strigaro D, Rogora M, 2021. Automated high frequency monitoring of Lake Maggiore through in situ sensors: system design, field test and data quality control. J. Limnol. 80:2011. DOI: https://doi.org/10.4081/jlimnol.2021.2011
Tolotti M, Dubois N, Milan M, Perga M-E, Straile D, Lami A, 2018. Large and deep perialpine lakes: a paleolimnological perspective for the advance of ecosystem science. Hydrobiologia 824:291-321. DOI: https://doi.org/10.1007/s10750-018-3677-x
Trolle D, Hamilton DP, Hipsey MR, et al., 2012. A community-based framework for aquatic ecosystem models. Hydrobiologia 683:25-34. DOI: https://doi.org/10.1007/s10750-011-0957-0
Trolle D, Jørgensen TB, Jeppesen E, 2008a. Predicting the effects of reduced external nitrogen loading on the nitrogen dynamics and ecological state of deep Lake Ravn, Denmark, using the DYRESM–CAEDYM model. Limnologica 38:220-232. DOI: https://doi.org/10.1016/j.limno.2008.05.009
Trolle D, Skovgaard H, Jeppesen E, 2008b. The Water Framework Directive: Setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM–CAEDYM. Ecol. Model. 219:138-152. DOI: https://doi.org/10.1016/j.ecolmodel.2008.08.005
Ulloa HN, Constantinescu G, Chang K, Horna-Munoz D, Sepúlveda Steiner O, Bouffard D, Wüest A, 2019. Hydrodynamics of a periodically wind-forced small and narrow stratified basin: a large-eddy simulation experiment. Environ. Fluid Mechan. 19:667-698. DOI: https://doi.org/10.1007/s10652-018-9645-1
Ulrich MM, Imboden DM, Schwarzenbach RP, 1995. MASAS—A user-friendly simulation tool for modeling the fate of anthropogenic substances in lakes. Environ. Softw. 10:177-198. DOI: https://doi.org/10.1016/0266-9838(95)00012-A
Valerio G, Cantelli A, Monti P, Leuzzi G, 2017. A modeling approach to identify the effective forcing exerted by wind on a prealpine lake surrounded by a complex topography. Water Resour. Res. 53:4036-4052. DOI: https://doi.org/10.1002/2016WR020335
Valerio G, Pilotti M, Barontini S, Leoni B, 2015. Sensitivity of the multiannual thermal dynamics of a deep pre-alpine lake to climatic change. Hydrol. Process. 29:767-779. DOI: https://doi.org/10.1002/hyp.10183
Vilhena LC, Marti CL, Imberger J, 2013. The importance of nonlinear internal waves in a deep subalpine lake: Lake Iseo, Italy. Limnol. Oceanogr. 58:1871-1891. DOI: https://doi.org/10.4319/lo.2013.58.5.1871
Vinçon-Leite B, 1991. [Contribution de la modélisation mathématique à l’étude de la qualité de l’eau dans les lacs sub-alpins: le lac du Bouget (Savoie)]. [Ph.D. Thesis in French]. Thèse de doctorat en Sciences Appliquées, Ecole Nationale des Ponts et Chaussées, Paris: 274 pp.
Vinçon-Leite B, Casenave C, 2019. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 651:2985-3001. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.320
Vinçon-Leite B, Lemaire BJ, Khac VT, Tassin B, 2014. Long-term temperature evolution in a deep sub-alpine lake, Lake Bourget, France: how a one-dimensional model improves its trend assessment. Hydrobiologia 731:49-64. DOI: https://doi.org/10.1007/s10750-014-1818-4
Vinçon-Leite B, Tassin B, Jaquet J-M, 1995. Contribution of mathematical modeling to lake ecosystem understanding: Lake Bourget (Savoy, France). Hydrobiologia 300-301:433-442. DOI: https://doi.org/10.1007/BF00024485
Wadzuk BM, Hodges BR, 2009. Hydrostatic versus nonhydrostatic Euler-equation modeling of nonlinear internal waves. J. Eng. Mech.-ASCE 135:1069-1080. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2009)135:10(1069)
Weinberger S, Vetter M, 2012. Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee. Ecol. Model. 244:38-48. DOI: https://doi.org/10.1016/j.ecolmodel.2012.06.016
Weinberger S, Vetter M, 2014. Lake heat content and stability variation due to climate change: coupled regional climate model (REMO)-lake model (DYRESM) analysis. J. Limnol. 73:93-105. DOI: https://doi.org/10.4081/jlimnol.2014.668
Wüest A, Bouffard D, Guillard J, Ibelings BW, Lavanchy S, Perga M-E, Pasche N, 2021. LéXPLORE: A floating laboratory on Lake Geneva offering unique lake research opportunities. Wiley Interdiscip. Rev. Water 8:e1544. DOI: https://doi.org/10.1002/wat2.1544
Yankova Y, Neuenschwander S, Köster O, Posch T, 2017. Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers. Sci. Rep. 7:13770. DOI: https://doi.org/10.1038/s41598-017-13159-9

How to Cite

Dresti, Claudia, Andrea Fenocchi, and Diego Copetti. 2021. “Modelling Physical and Ecological Processes in Medium-to-Large Deep European Perialpine Lakes: A Review”. Journal of Limnology 80 (3). https://doi.org/10.4081/jlimnol.2021.2041.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo