Estimating aquatic invertebrate diversity in the southern Alps using data from Biodiversity Days

Credit: Tom Corser www.tomcorser.com
Submitted: 11 December 2020
Accepted: 26 April 2021
Published: 21 June 2021
Abstract Views: 964
PDF: 353
Supplementary: 94
HTML: 16
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

High biodiversity is a prerequisite for the integrity, stability, and functioning of global aquatic ecosystems, but it is currently subject to anthropogenic threats. Small freshwater bodies with high habitat diversity are essential to sustain regional biodiversity, but species inventory and biodiversity are largely overlooked, especially in mountainous regions. In the Italian Alps, obligate assessments of freshwater biota (e.g., for the European water framework directive, WFD) are usually done in larger rivers or lakes only, which is why many taxa from small freshwater habitats might have been overlooked so far. Here we summarize and discuss the efforts to record aquatic invertebrates within the framework of so-called "Biodiversity Days", organized since 2001 at 13 different sites located across the North Italian province of South Tyrol. These events with voluntary participation of scientists and naturalists from universities and environmental agencies led to the detection of 334 benthic invertebrate taxa in streams and lakes (mostly species or genus level), whereby higher taxa richness was found in streams. The overall hierarchy of species numbers within invertebrate orders or families corresponded to that of other Alpine regions (groups richest in taxa were Chironomidae and Trichoptera) and these Biodiversity Days contributed to biodiversity research of that region in detecting 167 additional taxa. Besides analyzing yearly gains in the regional taxa inventory, we predict that future surveys will lead to new discoveries of aquatic taxa for that province (i.e., current modeling estimates a regional inventory of more than 600 taxa). However, specific surveys in hitherto unconsidered habitats, such as morphologically modified or urban waters, might reveal even more taxa than currently estimated. Besides characterizing the invertebrate fauna of this region and providing a first reference list for future monitoring projects in the same region, this work demonstrates that such Biodiversity Days can contribute to biodiversity research.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, et al., 2008. Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58:403–414.
Alber R, Niedrist GH, Mätzler A, Lösch B, 2015. [Makrozoobenthos (wirbellose Flussohlenbewohner)]. In: [Tag der Artenvielfalt 2014 in St. Felix (Gemeinde Unsere Liebe Frau im Walde - St. Felix, Südtirol, Italien)].[in German]. Gredleriana 15:158–161.
Bauernfeind E, Humpesch UH, 2001. [Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung Und Ökologie].[in German] Verlag des Naturhistorischen Museums, Wien: 239 pp.
Biggs J, Fumetti S von, Kelly-Quinn M, 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793:3-39.
Bo T, Doretto A, Laini A, Bona F, Fenoglio S, 2016. Biomonitoring with macroinvertebrate communities in Italy: What happened to our past and what is the future? J. Limnol. 76:1584.
Braun LN, Weber M, Schulz M, 2000. Consequences of climate change for runoff from Alpine regions. Ann. Glaciol. 31:19–25.
Brown LE, Dickson NE, Carrivick JL, Füreder L, 2015. Alpine river ecosystem response to glacial and anthropogenic flow pulses. Freshw. Sci. 34:1201–1215.
Cardinale BJ, 2011. Biodiversity improves water quality through niche partitioning. Nature 472:86–89.
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al., 2012. Biodiversity loss and its impact on humanity. Nature 486:59–67.
Ceballos G, Ehrlich PR, Barnosky AD, Garcia A, Pringle RM, Palmer TM, 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1:e1400253-e1400253. DOI: https://doi.org/10.1126/sciadv.1400253
Collen B, Whitton F, Dyer EE, Baillie JEM, Cumberlidge N, Darwall WRT, Pollock C, Richman NI, Soulsby A-M, Böhm M, 2014. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23:40–51. DOI: https://doi.org/10.1111/geb.12096
Davies BR, Biggs J, Williams PJ, Lee JT, Thompson S, 2008. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597:7–17. DOI: https://doi.org/10.1007/s10750-007-9227-6
Duncan C, Thompson JR, Pettorelli N, 2015. The quest for a mechanistic understanding of biodiversity-ecosystem services relationships. Proc. Biol. Sci. 282:20151348. DOI: https://doi.org/10.1098/rspb.2015.1348
Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J, 2003. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1:488–494.
Füreder L, 2012. Freshwater ecology: Melting biodiversity. Nat. Clim. Chang. 2:318–319.
Füreder L, Niedrist GH, Schütz SA, 2017. Monitoring Alpine rivers: recent progress and future challenges. 6th Symp. Res. Prot. Areas 163-167.
Furse M, Hering D, Moog O, Verdonschot P, Johnson RK, Brabec K, et al., 2006. The STAR project: context, objectives and approaches. Hydrobiologia 566:3-29.
García FC, Bestion E, Warfield R, Yvon-Durochera G, 2018. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. USA 115:10989–10994.
Gessner MO, Ryckegem G Van, 2003. Water fungi as decomposers in freshwater ecosystems. In: Encyclopedia of Environmental Microbiology. Hoboken, John Wiley & Sons.
Giulivo M, Stella E, Capri E, Esnaola A, López de Alda M, Diaz‐Cruz S, Mandaric L, Muñoz I, Bellin A, 2019. Assessing the effects of hydrological and chemical stressors on macroinvertebrate community in an Alpine river: The Adige River as a case study. River Res. Appl. 35:78–87. DOI: https://doi.org/10.1002/rra.3367
Haase P, Hering D, Jähnig SC, Lorenz AW, Sundermann A, 2013. The impact of hydromorphological restoration on river ecological status: A comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia 704:475–488. DOI: https://doi.org/10.1007/s10750-012-1255-1
Hill MJ, Biggs J, Thornhill I, Briers RA, Ledger M, Gledhill DG, Wood PJ, Hassall C, 2018. Community heterogeneity of aquatic macroinvertebrates in urban ponds at a multi-city scale. Landsc. Ecol. 33:389–405. DOI: https://doi.org/10.1007/s10980-018-0608-1
Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y, et al., 2019. High Mountain Areas, p. 72. In: Pörtner H-O, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, et al. (eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Geneva, Switzerland: IPCC.
Hutchinson GE, 1957. Concluding Remarks. Cold Spring Harb. Symp. Quant. Biol. 22:415–527.
Jacobsen D, 2003. Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Arch. fur Hydrobiol. 158:145–167.
Jacobsen D, Schultz R, Encalada A, 1997. Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biol. 38:247–261.
Jacobsen JB, Boiesen JH, Thorsen BJ, Strange N, 2008. What’s in a name? The use of quantitative measures versus ‘Iconised’ species when valuing biodiversity. Environ. Resour. Econ. 39:247–263.
Janecek BFR, 1998. [Fauna Aquatica Austriaca -Taxonomie und Ökologie aquatischer wirbelloser Organismen (Teil V)].[in German]. Universität für Bodenkultur, Abt. Hydrobiologie (Ed.), Wien: 1-128.
Kobori H, Dickinson JL, Washitani I, Sakurai R, Amano T, Komatsu N, et al, 2016. Citizen science: a new approach to advance ecology, education, and conservation. Ecol. Res. 31:1-19.
Krug CB, Schaepman ME, Shannon LJ, Cavender-Bares J, Cheung W, McIntyre PB, et al., 2017. Observations, indicators and scenarios of biodiversity and ecosystem services change - a framework to support policy and decision-making. Curr. Opin. Environ. Sustain. 29:198-206.
Kuzmina ML, Braukmann TWA, Zakharov EV, 2018. Finding the pond through the weeds: eDNA reveals underestimated diversity of pondweeds. Appl. Plant Sci. 6:e01155.
Lencioni V, 2018. Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps. Sci. Total Environ. 622–623:563–575.
Lencioni V, Marziali L, Rossaro B, 2011. Diversity and distribution of chironomids (Diptera, Chironomidae) in pristine Alpine and pre-Alpine springs (Northern Italy). J. Limnol. 70:106.
Lösch B, 2008. [Makrozoobenthos und Diatomeen im Schlerngebiet (Südtirol)].[in German]. Gredleriana 8:175–188.
Lösch B, 2013. [Wirbellose Flusssohlenbewohner (Makrozoobenthos). In: Tag der Artenvielfalt 2012 in Ridnaun (Gemeinde Ratschings, Südtirol, Italien)].[in German]. Gredleriana 12:162–163.
Lösch B, 2014.[ Wirbellose Flussohlenbewohner (Makrozoobenthos). In: Tag der Artenvielfalt 2013 auf den Armentara-Wiesen (Gemeinde Wengen, Südtirol, Italien)].[in German]. Gredleriana 13:304–305.
Lösch B, Alber R, 2009. [Makrozoobenthos (wirbellose Flussohlenbewohner). In: GEO-Tag der Artenvielfalt 2008 am Reschenpass (Gemeinde Graun im Vinschgau, Südtirol, Italien)].[in German]. Gredleriana 9:307–309.
Lösch B, Alber R, Robinson CT, 2012. [Makrozoobenthos (wirbellose Flussohlenbewohner). In: Tag der Artenvielfalt 2011 im Münstertal in den Gemeinden Taufers (I) und Val Müstair (CH)].[in German]. Gredleriana 12:320–322.
Lösch B, Niedrist GH, Alber R, 2016. [Makrozoobenthos (wirbellose Flussohlenbewohner). In: Tag der Artenvielfalt 2015 in Weißenbach (Gemeinde Sarntal, Südtirol, Italien)].[in German]. Gredleriana 16:202–204.
Lubini V, Knispel S, Vincon G, 2012. Die Steinfliegen der Schweiz: Bestimmung und Verbreitung Fauna Helvetica. CSCF, SEG, Neuchatel.
Macadam CR, Stockan J, 2015. More than just fish food: ecosystem services provided by freshwater insects. Ecol. Entomol. 40:113–123.
McKinney ML, Lockwood JL, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14:450-453.
Miller-Rushing A, Primack R, Bonney R, 2012. The history of public participation in ecological research. Front. Ecol. Environ. 10:285–290.
Muhar S, Muhar A, Siegrist D, Egger G, 2019. Rivers of the Alps. Haupt Verlag, Bern: 512 pp.
Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM, 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737.
Niedrist GH, Alber R, Rauch H, Vorhauser S, Kiebacher T, Scotti A, Bottarin R, 2017. Aquatic invertebrates along the progression of glacial and non-glacial streams in Matsch Valley (South Tyrol, Italy). Gredleriana 17:129–140.
Niedrist GH, Cañedo-Argüelles M, Cauvy-Fraunié S, 2021. Salinization of Alpine rivers during winter months. Environ. Sci. Pollut. Res. 28:7295–7306.
Niedrist GH, Füreder L, 2016. Towards a definition of environmental niches in alpine streams by employing chironomid species preferences. Hydrobiologia 781:143–160. DOI: https://doi.org/10.1007/s10750-016-2836-1
Niedrist GH, Füreder L, 2017. Trophic ecology of alpine stream invertebrates: Current status and future research needs. Freshw. Sci. 36:466–478. DOI: https://doi.org/10.1086/692831
Niedrist GH, Füreder L, 2021. Real-time warming of Alpine streams: (re)defining invertebrates’ temperature preferences. River Res. Appl. 37:283–293. DOI: https://doi.org/10.1002/rra.3638
Noss RF, 1990. Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 4:355–364. DOI: https://doi.org/10.1111/j.1523-1739.1990.tb00309.x
Ofenböck T, Moog O, Hartmann A, Stubauer I, 2010. [Leitfaden zur Erhebung der Biologischen Qualitätselemente Teil A2 - Makrozoobenthos].[in German]. Bundesministerium für Land- und Forstwirtschaft, Wien: 226 pp.
Oh JT, Epler JH, Bentivegna CS, 2014. A rapid method of species identification of wild chironomids (Diptera: Chironomidae) via electrophoresis of hemoglobin proteins in sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE). Bull. Entomol. Res. 104:639–651.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, HMH Stevens, Szoecs E, Wagner H, 2017. vegan: Community Ecology Package.https://cran.r-project.org
Olden JD, Poff NLR, Douglas MR, Douglas ME, Fausch KD, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19:18–24.
Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CDL, Petchey OL, Proença V, Raffaelli D, et al., 2015. Biodiversity and Resilience of ecosystem functions. Trends Ecol. Evol. 30:673–684.
Peckarsky BL, Fraissinet MA, Penton MA, Conklin DJ, 1990. Freshwater macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca, New York: 442 pp.
Petchey OL, 2003. Integrating methods that investigate how complementarity influences ecosystem functioning. Oikos 101:323–330.
Peterson G, Allen CR, Holling CS, 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18.
Prather CM, Pelini SL, Laws A, Rivest E, Woltz M, Bloch CP, Toro I Del, Ho C-K, Kominoski J, Newbold TAS, Parsons S, Joern A, 2013. Invertebrates, ecosystem services and climate change. Biol. Rev. 88:327–348.
R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria. R Foundation for Statistical Computing, Vienna.
Rossaro B, Lencioni V, 2015. A key to larvae of species belonging to the genus Diamesa from Alps and Apennines (Italy). Eur. J. Environ. Sci. 5:62–79.
Rossaro B, Lencioni V, Boggero A, Marziali L, 2006. Chironomids from Southern Alpine running waters: Ecology, biogeography. Hydrobiologia 562:231–246.
Sala OE, Chapin FSC 3rd, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, et al., 2000. Global biodiversity scenarios for the year 2100.Science 287:1770-4.
Sambugar B, Dessì G, Sapelza A, Stenico A, Thaler B, Veneri A, 2006. [Südtiroler Quellfauna].[in German]. Autonome Provinz Bozen, Bozen: 365 pp.
Schmidt-Kloiber A, Hering D, 2015. www.freshwaterecology.info – An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53:271–282.
Scotti A, Jacobsen D, Tappeiner U, Bottarin R, 2019a. Spatial and temporal variation of benthic macroinvertebrate assemblages during the glacial melt season in an Italian glacier-fed stream. Hydrobiologia 827:123–139.
Scotti A, Tappeiner U, Bottarin R, 2019b. Stream benthic macroinvertebrates abundances over a 6-year monitoring period of an Italian glacier-fed stream. Biodivers. Data J. 7:33576. DOI: https://doi.org/10.3897/BDJ.7.e33576
Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H, 2007. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 16:49–67. DOI: https://doi.org/10.1007/s10531-006-9120-z
Strayer DL, Dudgeon D, 2010. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29:344–358. DOI: https://doi.org/10.1899/08-171.1
U.S. Environmental Protection Agency, 2018. SESDPROC-508-R4, Multi-Habitat Macroinvertebrate Sampling in Wadeable Freshwater Streams, Replaces SESDPROC-508-R3. Athens, Georgia: 14 pp.
Valiente‐Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P, Medel R, Navarro L, et al., 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29:299-307.
Wallace JB, Webster JR, 1996. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41:115-139.
Waringer J, Graf W, 1997. [Atlas Der Österreichischen Köcherfliegenlarven Unter Einschluß Der Angrenzenden Gebiete (Ergänzungen Und Berichtigungen), p. 143-160].[in German]. Facultas Universitätsverlag, Wien.
Wickham H, 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer, New York.
WWF, 2018. Living Planet Report - 2018: Aiming Higher. Gland: 75 pp.
Zwick P, 2004. Key to the west palaearctic genera of stoneflies (Plecoptera) in the larval stage. Limnologica 34:315–348.

Edited by

John P. Smol, Paleoecological Environmental Assessment and Research Lab, Queen's University, Kingston, Canada

Supporting Agencies

Naturmuseum Südtirol, Eurac Research, University of Innsbruck

How to Cite

Niedrist, Georg, Birgit Lösch, Magdalena Nagler, Hannes Rauch, Samuel Vorhauser, Alberto Scotti, Roberta Bottarin, and Renate Alber. 2021. “Estimating Aquatic Invertebrate Diversity in the Southern Alps Using Data from Biodiversity Days”. Journal of Limnology 80 (2). https://doi.org/10.4081/jlimnol.2021.1999.

Similar Articles

<< < 26 27 28 29 30 31 32 33 34 35 > >> 

You may also start an advanced similarity search for this article.