Daily, seasonal, and annual variability of temperature in streams inhabited by the endemic San Pedro Martir trout (Oncorhynchus mykiss nelsoni), in Baja California, Mexico, and the predicted temperature for the years 2025 and 2050

https://doi.org/10.4081/jlimnol.2021.2001

Authors

  • Iván A. Meza-Matty Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Mexico. https://orcid.org/0000-0001-6673-6860
  • Gorgonio Ruiz-Campos | gruiz@uabc.edu.mx Facultad de Ciencias, Universidad Autónoma de Baja California, Mexico. https://orcid.org/0000-0003-1790-456X
  • Luis Walter Daesslé Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Mexico. https://orcid.org/0000-0002-5608-9396
  • Arturo Ruiz-Luna Centro de Investigación en Alimentación y Desarrollo, Unidad Académica Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa , Mexico. https://orcid.org/0000-0001-6878-0929
  • Álvaro Alberto López-Lambraño Facultad de Ingeniería, Arquitectura y Diseño, Baja California, Mexico.
  • Faustino Camarena-Rosales Facultad de Ciencias, Universidad Autónoma de Baja California, Mexico. https://orcid.org/0000-0003-0862-3539
  • Kathleen R. Matthews U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA, United States. https://orcid.org/0000-0002-4339-7867

Abstract

The present study measured the daily, seasonal, and annual variability of the water temperature of streams in which the endemic rainbow trout, Oncorhynchus mykiss nelsoni, is distributed on the western slope of the Sierra San Pedro Mártir, Baja California, Mexico, between 1996 and 2019. The seasonal thermal interval and daily duration of summer temperatures above the thermal threshold for this trout subspecies (≥ 28°C) were determined in streams at different elevations (553, 1,220, and 2,080 masl, or meters above sea level). Temperatures ≥ 28°C were recorded at the study site on the stream with the lowest elevation (San Antonio de Murillos Creek) over an accumulated 365 h between June and September 2014, with the maximum temperature recorded there, 30.66 °C, making it the site most vulnerable to climate change. At the San Antonio de Murillos Creek, the average water temperature predicted by three models (GFDL R30, HadCM3, and Mote) for the year 2025 would be a non-lethal temperature, < 28 °C, for trout at a minimum elevation of 491-511 masl, while this was predicted to be 545-701 masl for the year 2050. Predicted hourly water temperatures of 28°C (non-lethal) may occur at minimum elevations of 868-898 masl in 2025 and at 908-1028 masl in 2050, reducing a 21-23% and 23-31% its current altitudinal distribution range, respectively, thus avoiding its presence at the type locality (San Antonio de Murillos).

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Abatzoglou JT, Redmond KT, 2007. Asymmetry between trends in spring and autumn temperature and circulation regimes over western North America. Geophys. Res. Lett. 34:L18808. DOI: https://doi.org/10.1029/2007GL030891

Alvarez M, 1985. Climatology of the Sierra San Pedro Mártir. Proceedings of the Desert Fishes Council 13:331-342.

Alvarez M, Maisterrena J, 1977. Meteorological and climatological observations in the Sierra San Pedro Martir. Rev. Mex. Astron. Astrophys. 2 (43).

Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD, 2008. Human induced changes in the hydrology of the western United States. Science 319:1080-1083. DOI: https://doi.org/10.1126/science.1152538

Bartholow JM, 2005. Recent water temperature trends in the lower Klamath River, California. N. Am. J. Fish Manage. 25:152–162. DOI: https://doi.org/10.1577/M04-007.1

Battin J., Wiley MW, Ruchelshaus MH, Palmer RN, Korb E, Bartz KK, Imaki H, 2007. Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. USA 104 6720–6725. DOI: https://doi.org/10.1073/pnas.0701685104

Behnke RJ, 2002. Trout and salmon of North America. The Free Press, New York.

Bidgood BF, Berst AH, 1969. Lethal temperatures for Great Lakes rainbow trout. J. Fish. Res. Board. Can. 26:456-459. DOI: https://doi.org/10.1139/f69-044

Bisson PA, Davis GE, 1976. Production of juvenile chinook salmon, Oncorhynchus tshawytscha, in a heated model stream. Fish. Bull. 74:763-774.

Brannon EL, Powell MS, Quinn TP, Talbot A, 2004. Population structure of Columbia River Basin Chinook salmon and steelhead trout. Revi. Fish. Sci. 12:99–232. DOI: https://doi.org/10.1080/10641260490280313

Chen JQ, Snow M, Lawrence CS, Church AR, Narum SR, Devlin RH, Farrell AP, 2015. Selection for upper thermal tolerance in rainbow trout (Oncorhynchus mykiss Walbaum). J. Exp. Biol. 218:803–812. DOI: https://doi.org/10.1242/jeb.113993

Christensen JH, Christensen OB, 2003. Climate modelling: Severe summertime flooding in Europe. Nature 421:805–806. DOI: https://doi.org/10.1038/421805a

Conde DA, Flesness N, Colchero F, Jones OR, Scheuerlein A, 2011. An emerging role of zoos to conserve biodiversity. Science 331: 390-1391. DOI: https://doi.org/10.1126/science.1200674

Crozier L, Zabel RW, Hamlet AF, 2008. Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook salmon. Glob. Change Biol. 14:236-249. DOI: https://doi.org/10.1111/j.1365-2486.2007.01497.x

Crozier LG, Zabel RW, 2006. Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon. J. Anim. Ecol. 75:1100-1109. DOI: https://doi.org/10.1111/j.1365-2656.2006.01130.x

Daufresne MD, Boet P, 2007. Climate change impacts on structure and diversity of fish communities in rivers. Glob. Change Biol. 13:2467–2478. DOI: https://doi.org/10.1111/j.1365-2486.2007.01449.x

Delgadillo-Rodríguez J, 1992. [Florística and ecología del norte de Baja California].[in Spanish]. Universidad Autónoma de Baja California, Mexicali, Mexico.

Delworth TL, Stouffer RJ, Dixon KW, Spelman MJ, Knutson TR, Broccoli AJ, Kushner PJ, Wetherald RT, 2002.

Simulation of climate variability and change by the GFDL R30 coupled climate model. Climate Dynamics 19:555-574. DOI: https://doi.org/10.1007/s00382-002-0249-5

Evermann BW, 1908. Descriptions of a new species of trout (Salmo nelsoni) and a new cyprinodont (Fundulus meeki) with notes on other fishes from Lower California. P. Biol. Soc. Wash. 21:19-30.

Flebbe PA, Roghair LD, Bruggink JL, 2006. Spatial modeling to project southern Appalachian trout distribution in a warmer climate. T. Am. Fish. Soc. 135:1371–1382. DOI: https://doi.org/10.1577/T05-217.1

García E, Mosiño P, 1968. The climates of Baja California. Report 1966-1967. Instituto de Geofísica-Universidad Nacional Autónoma de México, México.

Hamlet AF, Lettenmaier DP, 2007. Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resour. Res.h 43:W06427. DOI: https://doi.org/10.1029/2006WR005099

Heino J., Virkkala R, Toivonen, H, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84:39-54. DOI: https://doi.org/10.1111/j.1469-185X.2008.00060.x

IPCC (Intergovernmental Panel on Climate Change), 2007. Climate change 2007: the physical science basis. Available from: http: //www.ipcc.chi DOI: https://doi.org/10.1017/CBO9780511546013

Isaak DJ, Hubert WA, 2001. A hypothesis about factors that affect maximum summer stream temperatures across montane landscapes. J. Am. Water Resour. Assoc. 37:351–366. DOI: https://doi.org/10.1111/j.1752-1688.2001.tb00974.x

Istanbulluoglu E, Tarboton DG, Pack RT, Luce CH, 2004. Modeling of the interactions between forest vegetation, disturbances, and sediment yields. J. Geophys. Res. 109:F01009. DOI: https://doi.org/10.1029/2003JF000041

Jager HI, Van Winkle W, Holcomb BD, 1999. Would hydrologic climate changes in Sierra Nevada streams influence trout persistence? T. Am. Fish. Soc. 128:222–240. DOI: https://doi.org/10.1577/1548-8659(1999)128<0222:WHCCIS>2.0.CO;2

Jelks HL, Walsh, SJ, Burkhead, NM, Contreras-Balderas, S, Diaz-Pardo, E, Hendrickson, DA, Lyons, J, Mandrak, NE, Mccormick, F, Nelson, JS, Platania, SP, Porter, BA, Renaud, CB, Schmitter-Soto, JJ, Taylor, EB, Warren Jr., ML, 2008.

Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33:372-407. DOI: https://doi.org/10.1577/1548-8446-33.8.372

Kammerer BD, Heppel SA, 2013a. The effects of semichronic thermal stress on physiological indicators in steelhead. T. Am. Fish. Soc. 142:1299-1307. DOI: https://doi.org/10.1080/00028487.2013.806349

Kammerer BD, Heppel SA, 2013b. Individual condition indicators of thermal habitat quality in field populations of Redband Trout (Oncorhynchus mykiss gairdneri). Environ. Biol. Fish. 96:823-835. DOI: https://doi.org/10.1007/s10641-012-0078-2

Lehmann CH, 1986. [Geometría analítica].[Book in Spanish]. Editorial Limusa, Mexico.

Leppi JC, DeLuca TH, Harrar S, Running SW, 2010. August stream discharge trends portend impacts of climate change in the northern rockies, p. 24-31. In: R.F. Carline and C. LoSapio (eds.), Conserving wild trout. Proceedings of the Wild Trout X symposium, Bozeman.

Luce CH, Holden Z, 2009. Declining annual streamflow distributions in the Pacific Northwest United States, 1948– 2006. Geophys. Res. Lett. 36:L16401. DOI: https://doi.org/10.1029/2009GL039407

Lund SG, Caissie D, Cunjak RA, Vijayan MM, Tufts BL, 2002. The effects of environmental heat stress on heat-shock mRNA and protein expression in Miramichi Atlantic salmo (Salmo salar) parr. Can. J. Fish. Aquat. Sci. 59:1553-1562. DOI: https://doi.org/10.1139/f02-117

Lyons J, Zorn T, Stewart J, Seelbach P, Wehrly K, Wang L, 2009. Defining and characterizing coolwater streams and their fish assemblages in Michigan and Wisconsin, USA. N. Am. J. Fish. Manage. 29:1130-1151. DOI: https://doi.org/10.1577/M08-118.1

Magnuson JJ, Webster KE, Assel RA, Bowser CJ, Dillon PJ, Eaton JG, Evans HE, Fee EJ, Hall RI, Mortsch LR, Schindler DW, Quinn FH, 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield Region. Hydrol. Process. 11: 825-871. DOI: https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<825::AID-HYP509>3.0.CO;2-G

Mantua N, Hare S, Zhang Y, Wallace JM, Francis R, 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78:1069–1079. DOI: https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

Marine KR, Cech JJ, 2004. Effects of high water temperature on growth, smoltification, and predator avoidance in juvenile Sacramento River Chinook Salmon. N. Am. J. Fish. Manage. 24:198–210. DOI: https://doi.org/10.1577/M02-142

Matthews KR, 2010. California golden trout and climate change: is their stream habitat vulnerable to climate warming?, p. 81-87. In: R.F. Carline and C. LoSapio (eds.), Conserving wild trout. Proceedings of the Wild Trout X symposium, Bozeman.

Matthews KR, Berg NH, 1997. Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. J. Fish Biol. 50:50-67. DOI: https://doi.org/10.1111/j.1095-8649.1997.tb01339.x

Mesa MG, Weiland LK, Wagner P, 2002. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook salmon. Northw. Sci. 76:118-128.

Morgan PE, Heyerdahl K, Gibson CE, 2008. Multiseason climate synchronized widespread forest fires throughout the 20th century, Northern Rockies, USA. Ecology 89:717–728. DOI: https://doi.org/10.1890/06-2049.1

Morrison J, Quick MC, Foreman MGC, 2002. Climate change in the Fraser River watershed: flow and temperature projections. J. Hydrol. 263: 230–244. DOI: https://doi.org/10.1016/S0022-1694(02)00065-3

Mote PW, Hamlet AF, Clark MP, Lettenmaier DP, 2005. Declining mountain snowpack in western North America. Bull. Am. Meteorol. Soc. 86:39–49. DOI: https://doi.org/10.1175/BAMS-86-1-39

Mote PW, Parson EA, Hamlet AF, Keeton WS, Lettenmaier D, Mantua N, Miles EL, Peterson DW, Peterson DL, Slaughter R, Snover AK, 2003. Preparing for climatic change: The water, salmon, and forests of the Pacific Northwest. Climatic Change 61:45-88. DOI: https://doi.org/10.1023/A:1026302914358

Nakano S, Kitano F, Maekawa K, 1996. Potential fragmentation and loss of thermal habitats for charrs in the Japanese archipelago due to climatic warming. Freshwater Biol. 36:711–722. DOI: https://doi.org/10.1046/j.1365-2427.1996.d01-516.x

Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenham J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, 2000. Special report on emissions scenarios. Working Group III, Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge.

Nusslé S, Matthews KR, Carlson SM, 2015. Mediating water temperature increases due to livestock and global change in high elevation meadow streams of the Golden Trout Wilderness. PLoS One 10:e0142426. DOI: https://doi.org/10.1371/journal.pone.0142426

Official Mexican Standard, 2010. Environmental Protection-Mexican native species of wild flora and fauna risk categories and specifications for their inclusion, exclusion or change-list of species at risk. NOM-059-SEMARNAT-2010. Mexico, Official Mexican Standard.

Parmesan C, Yohe G, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42. DOI: https://doi.org/10.1038/nature01286

Petersen JH, Kitchell JF, 2001. Climate regimes and water temperature changes in the Columbia River: bioenergetic implications for predators of juvenile salmon. Can. J. Fish. Aquat. Sci. 58:1831–1841. DOI: https://doi.org/10.1139/f01-111

Pope VD, Gallani ML, Rowntree PR, Stratton RA, 2000. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dynam. 16:123-146. DOI: https://doi.org/10.1007/s003820050009

Quinn TP, 2005. The behavior and ecology of Pacific salmon and trout. University of Washington Press, Seattle.

Rahel FJ, 2002. Using current biogeographic limits to predict fish distributions following climate change. Am. Fish. Soc. Symp. 32:99–110.

Reeves GH, Everest FH, Hall JD, 1987. Interactions between the redside shiner (Richardsonius balteatus) and the steelhead trout (Salmo gairdneri) in western Oregon: the influence of water temperature. Can. J. Fish. Aquat. Sci. 44:1602-1613. DOI: https://doi.org/10.1139/f87-194

Reyes-Coca S, García-López JJ, 1991. Climatología de Baja California: Sierra de San Pedro Mártir, p. 29-33. In C. Lazcano (ed.), Memories of the III Week of Exploration and History: Sierra de San Pedro Mártir. Universidad Autónoma de Baja California, Ensenada.

Rieman BE, Isaak DJ, 2010. Climate change, aquatic ecosystems, and fishes in the Rocky Mountain West: implications and alternatives for management. Gen. Tech. Rep. RMRS-GTR-250. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. DOI: https://doi.org/10.2737/RMRS-GTR-250

Rieman BE, Isaak DJ, Adams S, Horan D, Nagel D, Luce C, Myers D, 2007. Anticipated climate warming effects on bull trout habitats and populations across the Interior Columbia River Basin. T. Am. Fish. Soc. 136:1552–1565. DOI: https://doi.org/10.1577/T07-028.1

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA, 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57-60. DOI: https://doi.org/10.1038/nature01333

Ruiz-Campos G, 2017. [La trucha arcoíris de la Sierra San Pedro Mártir: bionomía, ecología poblacional, hábitat y conservación].[Book in Spanish]. Tirant Lo Blanch, Ciudad de México.

Ruiz-Campos G, Pister EP, 1995. Distribution, habitat, and current status of the San Pedro Mártir trout, Oncorhynchus mykiss nelsoni (Evermann, 1908). Bull. South Calif. Acad. Sci. 94:131-148.

Ruiz-Campos G, Camarena-Rosales F, González-Acosta AF, Maeda-Martínez AM, García-De León FJ, Varela-Romero A, Andreu-Soler A, 2014. [Estatus actual de conservación de seis especies de peces dulceacuícolas de la península de Baja California, México].[Article in Spanish]. Rev. Mex. Biodivers. 85:1235-1248. DOI: https://doi.org/10.7550/rmb.43747

Sokal RR, Rohlf FJ, 1981. Biometry. W. H. Freeman & Co., San Francisco. 219 pp.

Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al. IPCC, 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013.

Verhille CE, English KK, Cocherell DE, Farrell AP, Fangue NA, 2016. High thermal tolerance of a rainbow trout population near its southern range limit suggests local thermal adjustment. Conserv. Physiol. 4:cow057. DOI: https://doi.org/10.1093/conphys/cow057

Wenger SJ, Isaak DJ, Dunham JB, Fausch KD, Luce CH, Neville HM, Rieman BE, Young MK, Nagel DE, Horan DL, Chandler GL, 2011. Role of climate and invasive species in structuring trout distributions in the Interior Columbia Basin, USA. Can. J. Fish. Aquat. Sci. 68:988–1008. DOI: https://doi.org/10.1139/f2011-034

Westerling AL, Hidalgo HG, Cayan DR, Wetnam TW, 2006. Warming and earlier spring increases western U.S. forest wildfire activity. Science 313:940–943. DOI: https://doi.org/10.1126/science.1128834

Downloads

Published
2021-05-25
Info
Issue
Section
Original Articles
Edited by
Franco Tassi, Department of Earth Sciences, University of Florence, Italy
Supporting Agencies
National Council of Science and Technology, Mexico (agreements: PCECCNA-050389, P22OCCOR-892393, 0340-N9107, 33528-V, 431100-5-1993PN)
Keywords:
Oncorhynchus mykiss nelsoni, climate change, water temperature, endemic, creek, model
Statistics
  • Abstract views: 373

  • PDF: 48
How to Cite
1.
Meza-Matty IA, Ruiz-Campos G, Daesslé LW, Ruiz-Luna A, López-Lambraño Álvaro A, Camarena-Rosales F, Matthews KR. Daily, seasonal, and annual variability of temperature in streams inhabited by the endemic San Pedro Martir trout (Oncorhynchus mykiss nelsoni), in Baja California, Mexico, and the predicted temperature for the years 2025 and 2050. J Limnol [Internet]. 2021 May 25 [cited 2021 Sep. 24];80(2). Available from: https://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2021.2001