Changes in cyanobacterial density due to application of Artificial Floating Island model with macrophytes: an experimental case study in a tropical reservoir

  • Pedro Ramírez-García | micro@unam.mx Laboratorio de Bacteriología, UIICSE, División de Investigación y Posgrado, Universidad Nacional Autónoma de México, Campus Iztacala, Tlalnepantla, Mexico.
  • David Chicalote-Castillo Laboratorio de Bacteriología, UIICSE, División de Investigación y Posgrado, Universidad Nacional Autónoma de México, Campus Iztacala, Tlalnepantla, Mexico.

Abstract

The Valle de Bravo (VB) reservoir is part of an important hydraulic system that provides about 40% of potable water to 21.5 million inhabitants of the Metropolitan Zone of Mexico City (Mexico). This reservoir shows deterioration in water quality due to its current eutrophic condition, which favors the recurring of cyanobacterial blooms. To date, there are no restoration strategies for this reservoir, so the use of eco-technologies such as Artificial Floating Islands (AFI) is proposed for the removal of nutrients and the improvement of water quality. Therefore, in this work AFIs have been implemented using two macrophytes (Phragmites australis (AFI-P) and Schoenoplectus sp. (AFI-S)) to evaluate the presence and distribution of potentially toxic cyanobacteria in relation to physicochemical variations at the AFI sites. The study was carried out over a period of 24 months (October 2016 -September 2018) divided into two cycles (C-I and C-II) with a dry and rainy season each. Cyanobacteria were the dominant group in the phytoplankton during all the study period. Nine potentially toxic cyanobacterial species were detected, with the predominance of Microcystis aeruginosa, Aphanizomenon yezoense, Pseudanabaena mucicola, Anabaena planctonica and Planktothrix agardhii. In this work, AFIs increased nitrates and had no effect on phosphates. Cyanobacteria were not reduced at AFI sites, however in rainy season in the second annual cycle (C-II) the concentrations of extracellular microcystins in the AFI-P and AFI-S were decreased while intracellular toxins were more strongly reduced only in the AFI-S.

Each AFI had a specific effect on four out of five potentially toxic cyanobacteria. Thus, AFI-P promoted the increase of M. aeruginosa but reduced A. planctonica, while AFI-S promoted both A. yezoense and P. mucicola. The AFIs modified the dynamics among cyanobacteria particularly diazotrophic A. yezoense which was favored by nitrates and the other three species maintained their presence by the phosphates. M. aeruginosa, non-diazotrophic, responded to nitrates only in the absence of A. yezoense. Finally, in VB reservoir we found a mutually exclusive relationship between M. aeruginosa and A. yezoense likewise between A. planctonica and P. mucicola.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Abed SN, Almuktar SA, Scholz M, 2017. Remediation of synthetic greywater in mesocosm-Scale floating treatment wetlands. Ecol. Eng. 102:303-319. DOI: https://doi.org/10.1016/j.ecoleng.2017.01.043

Alillo-Sánchez JL, Gaytán-Herrera ML, Martínez-Almeida VM, Ramírez-García P, 2014. Microcystin-LR equivalents and their correlation with Anabaena spp. in the main reservoir of a hydraulic system of Central Mexico. Inland Waters 4:327-336. DOI: https://doi.org/10.5268/IW-4.3.573

Borne KE, Tanner CC, Fassman-Beck EA, 2013. Stormwater nitrogen removal performance of a floating treatment wetland. Water Sci. Technol. 68:1657-1664. DOI: https://doi.org/10.2166/wst.2013.410

Cao Q, Wan X, Shu X, Xie L, 2019. Bioaccumulation and detoxication of microcystin-LR in three submerged macrophytes: The important role of glutathione biosynthesis. Chemosphere 225:935-942. DOI: https://doi.org/10.1016/j.chemosphere.2019.03.055

Carnero-Bravo V, Merino-Ibarra M, Ruiz-Fernández AC, Sanchez-Cabeza JA, Ghaleb B, 2015. Sedimentary record of water column trophic conditions and sediment carbon fluxes in a tropical water reservoir (Valle de Bravo, Mexico). Environ. Sci. Pollut. Res. Int. 22:4680-4694. DOI: https://doi.org/10.1007/s11356-014-3703-0

Castro-Castellon AT, Chipps MJ, Hankins NP, Hughes JMR, 2016. Lessons from the “Living-Filter”: An in-reservoir floating treatment wetland for phytoplankton reduction prior to a water treatment works intake. Ecol. Eng. 95:839-851. DOI: https://doi.org/10.1016/j.ecoleng.2016.07.023

Chang Y, Cui H, Huang M, He Y, 2017. Artificial floating islands for water quality improvement. Environ. Rev. 25:350-357. DOI: https://doi.org/10.1139/er-2016-0038

Chen M, Ding S, Chen X, Sun Q, Fan X, Lin J, Ren M, Yang L, Zhang C, 2018. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Water Res. 133:153-164. DOI: https://doi.org/10.1016/j.watres.2018.01.040

Choudhury MI, Segersten J, Hellman M, McKie BG, Hallin S, Ecke F, 2019. Importance of plant species for nitrogen removal using constructed floating wetlands in a cold climate. Ecol. Eng. 138:126-132. DOI: https://doi.org/10.1016/j.ecoleng.2019.07.012

Colin R, Eguiarte LE, 2016. Phylogeographic analyses and genetic structure illustrate the complex evolutionary history of Phragmites australis in Mexico. Am. J .Bot. 103:876-887. DOI: https://doi.org/10.3732/ajb.1500399

Comas A, 1996. Las chlorococcales dulceacuícolas de Cuba. Bibliotheca Phycologica. Band 99. J. Cramer, Berlin-Stuttgart: 192 pp.

Cronberg G, Annadotter H, 2006. Manual on aquatic cyanobacteria: A photo guide and a synopsis of their toxicology. Copenhagen: International Society for the Study of Harmful Algae and the United Nations Educational, Scientific and Cultural Organization: 106 p.

Dash MC, 1993. Fundamentals of Ecology. Tata McGraw-Hill, New Delhi: 373 pp.

Davis TW, Harke MJ, Marcoval MA, Goleski J, Orano-Dawson C, Berry DL, Gobler CJ, 2010. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat. Microb. Ecol. 61:149-162. DOI: https://doi.org/10.3354/ame01445

Fang T, Bao S, Sima, X, Jiang H, Zhu W, Tang W, 2016. Study on the application of integrated eco-engineering in purifying eutrophic river waters. Ecol. Eng. 94:320-328. DOI: https://doi.org/10.1016/j.ecoleng.2016.06.003

Ferber LR, Levine SN, Lini A, Livingston GP, 2004. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biol. 49:690-708. DOI: https://doi.org/10.1111/j.1365-2427.2004.01218.x

Ferdoushi Z, Haque F, Khan S, Haque M, 2008. The effects of two aquatic floating macrophytes (Lemna and Azolla) as biofilters of nitrogen and phosphate in fish ponds. Turk J. Fish Aquat. Sci. 8:253-258.

Flores E, Frías JE, Rubio LM, Herrero A, 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res. 83:117-133. DOI: https://doi.org/10.1007/s11120-004-5830-9

Gao X, Wang Y, Sun B, Li N, 2019. Nitrogen and phosphorus removal comparison between periphyton on artificial substrates and plant-periphyton complex in floating treatment wetlands. Environ. Sci. Pollut. Res. 26:21161-21171. DOI: https://doi.org/10.1007/s11356-019-05455-w

García PR, Nandini S, Sarma SSS, Robles Valderrama E, Cuesta I, Hurtado MD, 2002. Seasonal variations of zooplankton abundance in the freshwater reservoir Valle de Bravo (Mexico). Hydrobiologia 467:99-108. DOI: https://doi.org/10.1007/978-94-010-0415-2_8

Gaytan-Herrera ML, Martinez-Almeida V, Oliva-Martinez MG, Duran-Diaz Á, Ramirez-Garcia P, 2011. Temporal variation of phytoplankton from the tropical reservoir Valle de Bravo, Mexico. J. Environ. Biol. 32:117-126.

Ge Z, An R, Fang S, Lin P, Li C, Xue J, Yu S, 2017. Phragmites australis+Typha latifolia Community Enhanced the Enrichment of Nitrogen and Phosphorus in the Soil of Qin Lake Wetland. Scientifica 2017: 8539093. DOI: https://doi.org/10.1155/2017/8539093

Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB, 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87-97. DOI: https://doi.org/10.1016/j.hal.2016.01.010

Headley TR, Tanner CC, 2012. Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology. Crit. Rev. Environ. Sci. Tech. 42:2261-2310. DOI: https://doi.org/10.1080/10643389.2011.574108

Herrero A, Flores E, 2019. Genetic responses to carbon and nitrogen availability in Anabaena. Environ. Microbiol. 21:1-17. DOI: https://doi.org/10.1111/1462-2920.14370

Hubbard RK, 2010. Floating vegetated mats for improving surface water quality, p. 211-244. In: S. Vishal (ed.), Emerging environmental technologies. Springer: Cham. DOI: https://doi.org/10.1007/978-90-481-3352-9_9

Huber-Pestalozzi G, 1955. [Das Phytoplankton des Süsswassers. Systematik und Biologie. 4. Teil: Euglenophyceen].[Book in German]. E. Schweizerbart’sche Verlagsbuchhandlung Stuttgart: 606 pp.

Jankowiak J, Hattenrath‐Lehmann T, Kramer B J, Ladds M, Gobler CJ, 2019. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 64:1347-1370. DOI: https://doi.org/10.1002/lno.11120

Janson S, 2002. Cyanobacteria in symbiosis with diatoms, p. 1-10. In: A.N. Rai, B. Bergman and U. Rasmussen (eds.), Cyanobacteria in symbiosis. Springer: Cham. DOI: https://doi.org/10.1007/0-306-48005-0_1

Komárek J, Anagnostidis K, 1999. [Cyanoprokaryota 1 Teil: Chlorococcales]. In: H. Etts, G. Gartner, H. Heynig and D. Mollenhauer (eds.), [Süsswasserflora von Mitteleuropa].[Book in German]. Gustav Fischer: Frankfurt am Main.

Komárek J, Fott B, 1983. Chlorophyceae (Grlinalgen), Ordung: Chlomcoccales] p. 135-235. In: G. Huber-Pestalozzi (ed.), [Das Phytoplankton des Süsswassers. Systematik und Biologie. 4. Teil: Euglenophyceen].[Book in German]. E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.

Komárek J, H. Kling and Komáreková, 2003. Filamentous cyanobacteria. In: J.D. Wehr and R.G. Sheath (eds.), Freshwater Algae of North America. Ecology and Classification. Academic Press: Amsterdam. DOI: https://doi.org/10.1016/B978-012741550-5/50005-2

Lucke T, Walker C, Beecham S, 2019. Experimental designs of field-based constructed floating wetland studies: a review. Sci. Total Environ. 10: 199-208. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.018

Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VL, 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biol. 58: 552-559. DOI: https://doi.org/10.1111/j.1365-2427.2012.02866.x

Márquez-Pacheco H, Hansen AM, Falcón-Rojas A, 2013. Phosphorous control in a eutrophied reservoir. Environ. Sci. Pollut. Res. Int. 20: 8446-8456. DOI: https://doi.org/10.1007/s11356-013-1701-2

Mayo AW, Hanai EE, 2017. Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Phys. Chem. Earth (A,B,C) 100:170-180. DOI: https://doi.org/10.1016/j.pce.2016.10.016

Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O, 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59:303-327. DOI: https://doi.org/10.1016/j.envint.2013.06.013

Merino-Ibarra M, Monroy-Ríos E, Vilaclara G, Castillo FS, Gallegos ME, Ramírez-Zierold J, 2008. Physical and chemical limnology of a wind-swept tropical highland reservoir. Aquat. Ecol. 42:335-345. DOI: https://doi.org/10.1007/s10452-007-9111-5

Mesquita MC, Prestes ACC, Gomes AM, Marinho MM, 2019. Direct effects of temperature on growth of different tropical phytoplankton species. Microb. Ecol. 79:1-11. DOI: https://doi.org/10.1007/s00248-019-01384-w

Nakai S, Zou G, Okuda T, Tsai TY, Song X, Nishijima W, Okada M, 2010. Anti-cyanobacterial allelopathic effects of plants used for artificial floating islands. Allelopathy J. 26:1.

Nakamura K, Mueller G, 2008. Review of the performance of the artificial floating island as a restoration tool for aquatic environments. Proceedings of the World Environmental and Water Resources Congress 2008: Ahupua'A. DOI: https://doi.org/10.1061/40976(316)276

Nandini S, Sánchez-Zamora C, Sarma SSS, 2019. Toxicity of cyanobacterial blooms from the reservoir Valle de Bravo (Mexico): A case study on the rotifer Brachionus calyciflorus. Sci. Total Environ. 688:1348-1358. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.297

Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E, 2013. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15:1239-1253. DOI: https://doi.org/10.1111/j.1462-2920.2012.02729.x

Olguín EJ, Sánchez-Galván G, 2017. Floating wetlands for the improvement of water quality and provision of ecosystem services in urban eutrophic lakes, p. 293-305. In: A. Ansari, S. Gill, R. Gill, R. Lanza and L. Newman (eds.), Phytoremediation. Springer: Cham. DOI: https://doi.org/10.1007/978-3-319-52381-1_10

Olvera-Viascán V, Bravo-Inclán L, Sánchez-Chávez J, 1998. Aquatic ecology and management assessment in Valle de Bravo reservoir and its watershed. Aquat. Ecosyst. Health Manag. 1:277-290. DOI: https://doi.org/10.1080/14634989808656924

Paerl HW, 2009. Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuar. Coast. 32: 593-601. DOI: https://doi.org/10.1007/s12237-009-9158-8

Park HK, Byeon MS, Choi MJ, Yun SH, Jeon NH, You KA, Lee H, 2018. Water quality improvement through the interaction of biotic and abiotic variables within the rhizospheric zone of an artificial floating vegetation island. J. Freshwater Ecol. 33: 57-72. DOI: https://doi.org/10.1080/02705060.2017.1422559

Pavan F, Breschigliaro S, Borin M, 2015. Screening of 18 species for digestate phytodepuration. Environ. Sci. Pollut. Res. Int. 22:2455-2466. DOI: https://doi.org/10.1007/s11356-014-3247-3

Pavlineri N, Skoulikidis NT, Tsihrintzis VA, 2017. Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem. Eng. J. 308:1120-1132. DOI: https://doi.org/10.1016/j.cej.2016.09.140

Pflugmacher S, Wiegand C, Beattie KA, Krause E, Steinberg CE, Codd GA, 2001. Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (cav.) trin. ex steud. Environ. Toxicol. Chem. 20:846-852. DOI: https://doi.org/10.1002/etc.5620200421

Pimentel JS, Giani A, 2014. Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl. Environ. Microbiol. 80:5836-5843. DOI: https://doi.org/10.1128/AEM.01009-14

Popovsky J, Pfiester LA, 1990. [Dinophyceae (Dinofla gellidae)]. In: H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer (eds.), [Süsswassserflora von Mitteleropa].[Book in German]. Gustav Fischer Verlag: Jena.

Prescott GW, 1962. Algae of the Western Great Lakes Area. Willam C. Brown Co., Dubuque: 977 pp.

Ramírez-Zierold JA, Merino-Ibarra M, Monroy-Ríos E, Olson M, Castillo FS, Gallegos ME, Vilaclara G, 2010. Changing water, phosphorus and nitrogen budgets for Valle de Bravo reservoir, water supply for Mexico City Metropolitan Area. Lake Reserv. Manag. 26:23-34. DOI: https://doi.org/10.1080/07438140903539790

Rolff C, Almesjö L, Elmgren R, 2007. Nitrogen fixation and abundance of the diazotrophic cyanobacterium Aphanizomenon sp. in the Baltic Proper. Mar. Ecol. Prog. Ser. 332:107-118. DOI: https://doi.org/10.3354/meps332107

Romero-Oliva CS, Contardo-Jara V, Pflugmacher S, 2015. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon 105:62-73. DOI: https://doi.org/10.1016/j.toxicon.2015.08.017

Round FE, Crawford RM, Mann DG, 1990. Diatoms: Biology and morphology of the genera. Cambridge University Press, Cambridge: 758 pp.

Sabour B, Loudiki M, Vasconcelos V, 2009. Growth responses of Microcystis ichthyoblabe Kützing and Anabaena aphanizomenoides Forti (cyanobacteria) under different nitrogen and phosphorus conditions. Chem. Ecol. 25:337-344. DOI: https://doi.org/10.1080/02757540903193130

Šantrůčková H, Rejmánková E, Pivničková B, Snyder JM, 2010. Nutrient enrichment in tropical wetlands: shifts from autotrophic to heterotrophic nitrogen fixation. Biogeochemistry 101:295-310. DOI: https://doi.org/10.1007/s10533-010-9479-5

Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM, 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50:8923-8929. DOI: https://doi.org/10.1021/acs.est.6b02204

Shahid MJ, Arslan M, Ali S, Siddique M, Afzal M, 2018. Floating wetlands: a sustainable tool for wastewater treatment. Soil Air Wate. 46:1800120. DOI: https://doi.org/10.1002/clen.201800120

Sun J, Liu D, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25:1331-1346. DOI: https://doi.org/10.1093/plankt/fbg096

Takeda F, Nakano K, Aikawa Y, Nishimura O, Shimada Y, Fukuro S, Tanaka H, Hayashi N, Inamori Y, 2011. Allelopathic potential against Microcystis aeruginosa by emergent macrophytes on floating beds. J. Water Environ. Technol. 9:371-380. DOI: https://doi.org/10.2965/jwet.2011.371

Tell G, Conforti V, 1986. [Euglenophyta pigmentadas de la Argentina].[Book in Spanish]. Bibliotheca Phycologica, 75. J. Cramer: Berlin; 301 pp.

Tena-Flores JA, González-Elizondo MS, Herrera-Arrieta Y, Almaraz-Abarca N, Mayek-Pérez N, Vanzela AL, 2014. Karyotype characterization of four Mexican species of Schoenoplectus (Cyperaceae) and first report of polyploid mixoploidy for the family. Caryologia 67:124-134. DOI: https://doi.org/10.1080/00087114.2014.931633

Triantis T, Tsimeli K, Kaloudis T, Thanassoulias N, Lytras E, Hiskia A, 2010, Development of an integrated laboratory system for the monitoring of cyanotoxins in surface and drinking waters. Toxicon 55:979-989. DOI: https://doi.org/10.1016/j.toxicon.2009.07.012

Urakawa H, Dettmar DL, Thomas S, 2017. The uniqueness and biogeochemical cycling of plant root microbial communities in a floating treatment wetland. Ecol. Eng. 108:573-580. DOI: https://doi.org/10.1016/j.ecoleng.2017.06.066

van der Grinten E, Janssen AP, de Mutsert K, Barranguet C, Admiraal W, 2005. Temperature-and light-dependent performance of the cyanobacterium Leptolyngbya foveolarum and the diatom Nitzschia perminuta in mixed biofilms. Hydrobiologia 548:267-278. DOI: https://doi.org/10.1007/s10750-005-5324-6

Wang C, Wang Z, Wang P, Zhang S, 2016. Multiple effects of environmental factors on algal growth and nutrient thresholds for harmful algal blooms: application of response surface methodology. Environ. Model. Assess. 21:247-259. DOI: https://doi.org/10.1007/s10666-015-9481-3

Wang CY, Sample DJ, Day SD, Grizzard TJ, 2015. Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecol. Eng. 78:15-26. DOI: https://doi.org/10.1016/j.ecoleng.2014.05.018

Wang Y, Yin X, Cai Y, Yang Z, 2019. An enhanced system with macrophytes and polyurethane sponge as an eco-technology for restoring eutrophic water: A pilot test. Water 11:1828. DOI: https://doi.org/10.3390/w11091828

Weragoda SK, Jinadasa KBSN, Zhang DQ, Gersberg, RM, Tan SK, Tanaka N, Jern NW, 2012. Tropical application of floating treatment wetlands. Wetlands 32:955-961. DOI: https://doi.org/10.1007/s13157-012-0333-5

West M, Fenner N, Gough R, Freeman C, 2017. Evaluation of algal bloom mitigation and nutrient removal in floating constructed wetlands with different macrophyte species. Ecol. Eng. 108:581-588. DOI: https://doi.org/10.1016/j.ecoleng.2017.07.033

Wetzel RG, Likens GE, 2000. Composition and biomass of phytoplankton, p. 147-174. In: Limnological analyses. Springer: Cham. DOI: https://doi.org/10.1007/978-1-4757-3250-4_10

WHO, 1998. Guidelines for drinking water quality. Second ed. Health Criteria and Other Supporting Information, vol. 2. World Health Organization, Geneva. Available from: https://apps.who.int/iris/handle/10665/38551

Yeh N, Yeh P, Chang YH, 2015. Artificial floating islands for environmental improvement. ‎Renew. Sustain. Energy Rev. 47: 616-622. DOI: https://doi.org/10.1016/j.rser.2015.03.090

Yéprémian C, Catherine A, Bernard C, Congestri R, Elersek T, Pilkaityte R, 2017. Phycocyanin extraction and determination, p 335-338. In: J. Meriluoto, L. Spoof and G.A. Codd (eds.), Handbook of cyanobacterial monitoring and cyanotoxin analysis. J. Wiley & Sons: Chichester. DOI: https://doi.org/10.1002/9781119068761.ch35

Zhang CB, Liu WL, Pan XC, Guan M, Liu SY, Ge Y, Chang J, 2014. Comparison of effects of plant and biofilm bacterial community parameters on removal performances of pollutants in floating island systems. Ecol. Eng. 73:58-63. DOI: https://doi.org/10.1016/j.ecoleng.2014.09.023

Zhou L, Chen G, Cui N, Pan Q, Song X, Zou G, 2019. Allelopathic effects on Microcystis aeruginosa and allelochemical identification in the culture solutions of typical artificial floating-bed plants. Bull. Environ. Contam. Toxicol. 102:115-121. DOI: https://doi.org/10.1007/s00128-018-2486-2

Zhu M, Zhu G, Zhao L, Yao X, Zhang Y, Gao G, Qin B, 2013. Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu, China. Environ. Sci. Pollut. Res. Int. 20:1803-1811. DOI: https://doi.org/10.1007/s11356-012-1084-9

Published
2020-10-28
Info
Issue
Section
Original Articles
Edited By
Rossano Bolpagni, Dept. of Life Science, Inland water Ecology Lab, University of Parma, Italy
Supporting Agencies
DGAPA-PAPIIT (IN219218) for financial support and to National Commission of Water, Mexico 2016-2017 for partially supported this research
Keywords:
Phragmites australis, Schoenoplectus spp., floating island, cyanobacteria, tropical reservoir
Statistics
  • Abstract views: 1615

  • PDF: 148
  • Supplementary: 35
How to Cite
1.
Ramírez-García P, Chicalote-Castillo D. Changes in cyanobacterial density due to application of Artificial Floating Island model with macrophytes: an experimental case study in a tropical reservoir. J Limnol [Internet]. 2020Oct.28 [cited 2021May19];80(1). Available from: https://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2020.1959