Attenuation of ultraviolet radiation and photosynthetically active radiation in six Yunnan Plateau lakes of China based on seasonal field investigations

  • Weilu Wang Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China.
  • Xuan Yang Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China.
  • Licheng Huang Kunming Institute of Plateau Lake Dianchi, Kunming, China.
  • Jiang Qin Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming, China.
  • Qichao Zhou | qchzhou@ynu.edu.cn Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China.

Abstract

Solar radiation is a primary driver affecting several physical, chemical and biological processes in lake ecosystems. The attenuation of sunlight in water is directly controlled by optically active substances. Here, the seasonal and interlake heterogeneities of the diffuse attenuation coefficients (Kd(λ)) of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) were studied based on field investigations in six Yunnan Plateau lakes (i.e., Chenghai, Dianchi, Erhai, Fuxian, Lugu and Yangzong) of China, October 2014‒July 2016. The results revealed that Kd(λ) generally increased with decreasing wavelength and increasing trophic state and that Kd(UVR) presented higher interlake heterogeneity than Kd(PAR). The interlake heterogeneity surpassed the seasonal heterogeneity of Kd(λ), whereas the intralake seasonal heterogeneity, which is related to the lake trophic state and solar spectrum, was obvious. Although the main factors affecting Kd(λ) were chromophoric dissolved organic matter (CDOM) and phytoplankton in general, the interlake heterogeneity was found. In eutrophic, turbid shallow Lake Dianchi, CDOM primarily affected UV-B, whereas total suspended solids (TSS) and/or phytoplankton had important effects on Kd(UV-B), Kd(UV-A) and Kd(PAR). CDOM, TSS and phytoplankton influenced the Kd(UV-B), Kd(UV-A) and Kd(PAR) in the deep mesotrophic Lake Chenghai and Lake Erhai, but the main particulate factors were different between these two lakes. In the deep, oligotrophic clear Lake Fuxian and Lake Lugu, only the significant effect of CDOM on Kd(UVR) in Lake Fuxian was detected. Additionally, the factors affecting Kd(λ) in Lake Yangzong were atypical, possibly due to the artificial addition of massive amounts of ferric chloride.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Author Biographies

Weilu Wang, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming

Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming

Qichao Zhou, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming

Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming

Published
2020-02-26
Info
Issue
Section
Original Articles
Edited By
Michela Rogora, CNR-IRSA, Verbania, Italy
Keywords:
Ultraviolet radiation, photosynthetically active radiation, diffuse attenuation coefficient, interlake heterogeneity, eutrophication, Yunnan Plateau
Statistics
  • Abstract views: 247

  • PDF: 81
  • HTML: 0
How to Cite
1.
Wang W, Yang X, Huang L, Qin J, Zhou Q. Attenuation of ultraviolet radiation and photosynthetically active radiation in six Yunnan Plateau lakes of China based on seasonal field investigations. J Limnol [Internet]. 2020Feb.26 [cited 2020Sep.22];79(2). Available from: https://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2020.1951