Aquatic food web research in mesocosms: a literature survey

Aquatic food web research in mesocosms


  • Csenge Póda | Evolutionary Systems Research Group; Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary.
  • Ferenc Jordán Evolutionary Systems Research Group; Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary.


Food web research feeds ecology with elementary theoretical concepts that need controlled experimental testing. Mesocosm facilities offer multiple ways to execute experimental food web research in a rigorous way. We performed a literature survey to overview food web research implementing the mesocosm approach. Our goal was to summarise quantitatively how the mesocosm approach has formerly been used and question how to best utilise mesocosms for the emerging topics in food web research in the future. We suggest increasing the number of replicates, extending the duration of the experiments, involving higher trophic levels and addressing the combined effects of multiple stressors.



PlumX Metrics


Download data is not yet available.


Aberle N, Bauer B, Lewandowska A, Gaedke U, Sommer U, 2012. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Mar. Biol. 159:2441–2453. DOI:

d’Alcalà MR, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A, 2004. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci. Mar. 68:65–83. DOI:

Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM, 2014. Environmental conditions influence eDNA persistence in aquatic systems. Env. Sci Technol. 48:1819–1827. DOI:

Bloesch J, Bossard P, Bührer H, Bürgi HR, Uehlinger U, 1988. Can results from limnocorral experiments be transferred to in situ conditions? Hydrobiologia 159.3:297–308. DOI:

Carpenter SR, Kitchell JF, 1996. The trophic cascade in lakes. Cambridge University Press.

Chiba S, Aita MN, Tadokoro K, Saino T, Sugisaki H, Nakata K, 2008. From climate regime shifts to lower-trophic level phenology: synthesis of recent progress in retrospective studies of the western North Pacific. Prog. Oceanogr. 77:112–126. DOI:

Cirtwill AR, Dalla Riva GV, Gaiarsa MP, Bimler MD, Cagua EF, Coux C, Dehling DM, 2018. A review of species role concepts in food webs. Food Webs 16:e00093. DOI:

De Laender F, Rohr JR, Ashauer R, Baird DJ, Berger U, Eisenhauer N, Grimm V, Hommen U, Maltby L, Melián CJ, Pomati F, Roessink I, Radchuk V, Van den Brink PJ, 2016. Reintroducing environmental change drivers in biodiversity–ecosystem functioning research. Trends Ecol. Evol. 31:905–915. DOI:

Drake JA, 1991. Community-assembly mechanics and the structure of an experimental species ensemble. Am. Nat. 137:1–26. DOI:

Dunne JA, Williams RJ, Martinez ND, 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5:558–567. DOI:

Garzke J, Hansen T, Ismar SM, Sommer U, 2016. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS One 11.5: e0155952. DOI:

Gsell AS, Özkundakci D, Hébert M-P, Adrian R, 2016. Quantifying change in pelagic plankton network stability and topology based on empirical long-term data. Ecol. Indic. 65:76–88. DOI:

Kaldy JE, Brown CA, Nelson WG, Frazier M, 2017. Macrophyte community response to nitrogen loading and thermal stressors in rapidly flushed mesocosm systems. J. Exp. Mar. Biol. Ecol. 497:107–119. DOI:

Lafferty KD, Dobson AP, Kuris AM, 2006. Parasites dominate food web links. Proc. Natl. Acad. Sci. 103:11211–11216. DOI:

Lau MK, Borrett SR, Baiser B, Gotelli NJ, Ellison AM, 2017. Ecological network metrics: opportunities for synthesis. Ecosphere 8:e01900. DOI:

Lawton JH, Naeem S, Woodfin RM, Brown VK, Gange A, Godfray HJC, Heads A, Lawler S, Magda D, Thomas CD, Thompson J, Young S, 1993. The Ecotron: a controlled environmental facility for the investigation of population and ecosystem processes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 341:181–194. DOI:

Layman CA, Giery ST, Buhler S, Rossi R, Penland T, Henson MN, Bogdanoff AK, Cove MV, Irizzary AD, Schalk CM, Archer SK, 2015. A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Food Webs 4:14–24. DOI:

Livi CM, Jordán F, Lecca P, Okey TA, 2011. Identifying key species in ecosystems with stochastic sensitivity analysis. Ecol. Model. 222:2542–2551. DOI:

Mackas DL, Greve W, Edwards M, Chiba S, Tadokoro K, Eloire D, Mazzocchi MG, Batten S, Richardson AJ, Johnson C, Head E, Conversi A, Peluso T, 2012. Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology. Prog. Oceanogr. 97:31–62. DOI:

Moustaka-Gouni M, Kormas KA, Scotti M, Vardaka E, Sommer U, 2016. Warming and acidification effects on planktonic heterotrophic pico-and nanoflagellates in a mesocosm experiment. Protist 167:389–410. DOI:

Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM, 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368:734. DOI:

Paine RT, 1980. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49:667–685. DOI:

Pimm SL, 1980. Food web design and the effect of species deletion. Oikos 35:139–149. DOI:

Piredda R, Tomasino MP, D’erchia AM, Manzari C, Pesole G, Montresor M, Kooistra WHCF, Sarno D, Zingone A, 2016. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. 93:fiw200. DOI:

Sommer U, Charalampous E, Scotti M, Moustaka-Gouni M, 2018. Big fish eat small fish: implications for food chain length? Community Ecol. 19:107–115. DOI:

Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzsche F, Katechakis A, Lippert B, Løseth K, Peters C, Roederer W, Sandow M, Sundt-Hansen L, Olsen Y, 2004. Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecol. Lett. 7:321–328. DOI:

Thompson L, Thomas CD, Radley JM, Williamson S, Lawton JH, 1993. The effect of earthworms and snails in a simple plant community. Oecologia 95:171–178. DOI:

Wahl M, Werner FJ, Buchholz B, Raddatz S, Graiff A, Matthiessen B, Karsten U, Hiebenthal C, Hamer J, Ito M, Gülzow E, Rilov G, Guy-Haim T, 2020. Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem. Limnol. Oceanogr. 65:807-827. DOI:

Wootton JT, 1993. Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. Am. Nat. 141:71–89. DOI:

Zhao L, Zhang H, O’Gorman EJ, Tian W, Ma A, Moore JC, Borrett SR, Woodward G, 2016. Weighting and indirect effects identify keystone species in food webs. Ecol. Lett. 19:1032–1040. DOI:

Short Communication
Edited by
Andras Abonyi, MTA Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
Supporting Agencies
The National Research, Development and Innovation Office (Hungary)
food web, mesocosm, experimental design, freshwater, aquatic ecosystems
  • Abstract views: 3340

  • PDF: 190
  • Supplementary: 18
  • Data Set: 15
  • HTML: 7
How to Cite
Póda C, Jordán F. Aquatic food web research in mesocosms: a literature survey: Aquatic food web research in mesocosms. J Limnol [Internet]. 2020 Apr. 29 [cited 2021 Sep. 24];79(3). Available from: