Effects of morphology in controlling propagation of density currents in a reservoir using uncalibrated three-dimensional hydrodynamic modeling

Effects of morphology in propagation of density currents


In this study, effects of basin morphology are shown to affect density current hydrodynamics of a large reservoir using a three-dimensional (3D) hydrodynamic model that is validated (but not calibrated) with in situ observational data. The AEM3D hydrodynamic model was applied for 5-month simulations during winter and spring flooding for the Maroon reservoir in southwest Iran, where available observations indicated that large-scale density currents had previously occurred. The model results were validated with near-bottom water temperature measurements that were previously collected at five locations in the reservoir. The Maroon reservoir consists of upper and lower basins that are connected by a deep and narrow canyon. Analyses of simulations show that the canyon strongly affects density current propagation and the resulting differing limnological characteristics of the two basins. The evolution of the Wedderburn Number, Lake Number, and Schmidt stability number are shown to be different in the two basins, and the difference is attributable to the morphological separation by the canyon. Investigation of the background potential energy (BPE) changes along the length of the canyon indicated that a density front passes through the upper section of the canyon but is smoothed into simple filling of the lower basin. The separable dynamics of the basins has implications for the complexity of models needed for representing both water quality and sedimentation.



PlumX Metrics


Download data is not yet available.


Alizadeh A, Khalili N, 2009. [Estimation of Angstrom coefficient and developing a regression equation for solar radiation estimation (case study: Mashhad)].[Article in Persian]. J. Water Soil 23:229-238.

Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome.

An S, Julien PY, 2014. Three-dimensional modeling of turbid density currents in Imha Reservoir, South Korea. J. Hydraul. Eng. 140:05014004. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000851

Amadori M, Piccolroaz S, Dijkstra HA, Toffolon M (2019). What makes an elongated lake ‘large’? Scales from wind-driven steady circulation on a rotating Earth. J. Great Lakes Res. (in press). doi: 10.1016/j.jglr.2019.10.013. DOI: https://doi.org/10.1016/j.jglr.2019.10.013

Ångström A, 1924. Solar and terrestrial radiation. Q. J. R. Meteorol. Soc. 50:121-125. DOI: https://doi.org/10.1002/qj.49705021008

Antenucci JP, Imberger J, 2001. Energetics of long internal gravity waves in large lakes. Limnol. Oceanogr. 46:1760-1773. DOI: https://doi.org/10.4319/lo.2001.46.7.1760

Arakawa A, Lamb VR, 1977. Computational design of the basic dynamical processes of the UCLA general circulation model, p. 173-265. In: Chang J. (ed.), General Circulation Models of the Atmosphere. Methods in Computational Physics. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-460817-7.50009-4

Botelho Daniel A, Imberger J, 2007. Dissolved oxygen response to wind‐inflow interactions in a stratified reservoir. Limnol. Oceanogr. 52:2027-2052. DOI: https://doi.org/10.4319/lo.2007.52.5.2027

Box GEP, 1976. Science and statistics. J. Am. Stat. Ass. 71:791-799. DOI: https://doi.org/10.1080/01621459.1976.10480949

Bourent PE, Dartus D, Tassin B, Vincon-Leite B, 1999. Numerical investigation of plunging density current. J. Hydraul. Eng. 125:584-594. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1999)125:6(584)

Cassulli V, Cheng RT, 1992. Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Meth. 15:629-648. DOI: https://doi.org/10.1002/fld.1650150602

Chung SW, Hipsey MR, Imberger J, 2009. Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea. Environ. Model. Softw. 24:1467-1482. DOI: https://doi.org/10.1016/j.envsoft.2009.05.016

Cortés A, Fleenor WE, Wells MG, de Vicente I, Rueda FJ, 2014. Pathways of river water to the surface layers of stratified reservoirs. Limnol. Oceanogr. 59:233-250. DOI: https://doi.org/10.4319/lo.2014.59.1.0233

Ford DE, Johnson LS, 1986. An assessment of reservoir mixing processes, technical report for US Army Corps of Engineers. Ford Thornton Norton and associates Ltd., USA.

Hajjam S, Jamei M, 2009. [Estimation of solar radiation parameter (sunshine hours) and Angstrom coefficients in Khuzestan Province].[Article in Persian]. Proceedings 10th National Conf. of Irrigation and Evaporation Reduction, Kerman, Iran.

Hamilton, DP, Schladow, SG, 1997. Prediction of water quality in lakes and reservoirs: Part I-Model description. Ecol. Model. 96:91-110. DOI: https://doi.org/10.1016/S0304-3800(96)00062-2

Hayes NM, Deemer BR, Corman JR, Razavi R, Strok KE, 2017. Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model. Limnol. Oceanogr. Lett. 2:47-62. DOI: https://doi.org/10.1002/lol2.10036

Hipsey MR, Antenucci JP, Brookes JD, 2008. A generic, process‐based model of microbial pollution in aquatic systems. Water Resour. Res. 44:W07408. doi: 10.1029/2007WR006395. DOI: https://doi.org/10.1029/2007WR006395

Hodges BR, Dallimore C, 2016. Aquatic Ecosystem Model: AEM3D, User manual. Hydronumerics, Australia.

Hodges BR, Imberger J, Saggio A, Winters KB, 2000. Modeling basin-scale internal waves in a stratified lake. Limnol. Oceanogr. 45:1603-1620. DOI: https://doi.org/10.4319/lo.2000.45.7.1603

Hodges BR, Laval B, Wadzuk BM, 2006. Numerical error assessment and a temporal horizon for internal waves in a hydrostatic model. Ocean Model. 13:44-64. DOI: https://doi.org/10.1016/j.ocemod.2005.09.005

Hogg CAR, Dalziel SB, Huppert HE, Imberger J, 2017. Inclined gravity currents filling basins: the impact of peeling detrainment on transport and vertical structure. J. Fluid Mech. 820:400-423. DOI: https://doi.org/10.1017/jfm.2017.196

Hutchinson GE, Loffler H, 1956. The thermal classification of lakes. P. Natl. Acad. Sci. 42:84-86. DOI: https://doi.org/10.1073/pnas.42.2.84

Hutchinson GE, 1957. A treatise on limnology. J. Wiley & Sons, Inc., New York.

Hürzeler BE, Imberger J, Ivey GN, 1996. Dynamics of turbidity current with reversing buoyancy. J. Hydr. Engin. 122:230-236. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1996)122:5(230)

Imberger J, Patterson JC, 1990. Physical limnology. Adv. Appl. Mech. 27:303-475. DOI: https://doi.org/10.1016/S0065-2156(08)70199-6

Ji Z-G, 2008. Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. J. Wiley & Sons, Inc., New York.

Jørgensen SE, Löffler H, Rast W, Straškraba M, 2005. Lake and reservoir management. Elsevier Inc.

Kennedy RH, Thornton KW, Ford DE, 1985. Characterization of the reservoir ecosystem. In: D. Gunnison (ed.), Microbial Processes in Reservoirs. Springer. DOI: https://doi.org/10.1007/978-94-009-5514-1_2

Kim, Y. and B. Kim. 2006. Application of a 2-dimensional water quality model (CE-QUAL-W2) to the turbidity interflow in a deep reservoir (Lake Soyang, Korea). Lake Reserv. Manage. 22:213-222. https://doi.org/10.1080/07438140609353898. DOI: https://doi.org/10.1080/07438140609353898

Lindim Fontes C, 2010. Modelling of water quality in the Alqueva Reservoir, Portugal. PhD thesis, University of Minho, Portugal.

Löffler H, 2004. The origin of lake basins, p. 8-60. In: P.E. O’Sullivan and C.S. Reynolds (eds.), The lakes handbook. Blackwell Publishing. DOI: https://doi.org/10.1002/9780470999271.ch2

Marti CL, Imberger J, Garibaldi L, Leoni B, 2016. Using time scales to characterize phytoplankton assemblages in a deep subalpine lake during the thermal stratification period: Lake Iseo, Italy. Water Resour. Res. 52:1762–1780. DOI: https://doi.org/10.1002/2015WR017555

Mehrabani R, Makvandi A, Nekouyanfar M, Hassounizadeh H, 2013. Tracing and measurement of turbidity current in maroon dam. Proceedings 9th Int. River Engineering Conf., Ahwaz, Iran.

Panse S, 2013. Background and available potential energy in numerical simulations of a Boussinesq Fluid. Master’s Thesis 1911 - February 2014. 1002.

Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E, 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 26:1325-1336. DOI: https://doi.org/10.1016/j.envsoft.2011.05.006

Robertson DM and Imberger J, 1994. Lake Number, a quantitative indicator of mixing used to estimate changes in dissolved oxygen. Int. Revue Ges. Hydrobiol. 79:159-176. DOI: https://doi.org/10.1002/iroh.19940790202

Rueda FJ, McIntyre S, 2010. Modelling the fate and transport of negatively buoyant storm–river water in small multi-basin lakes. Environ. Model. Softw. 25:146-157. DOI: https://doi.org/10.1016/j.envsoft.2009.07.002

Scheu KR, Fong D, Monismith SG, Fringer OB, 2018. Modeling sedimentation dynamics of sediment‐laden river intrusions in a rotationally‐influenced, stratified lake. Water Resour. Res. 54:4084- 4107. DOI: https://doi.org/10.1029/2017WR021533

Schladow SG, Hamilton DP, 1997. Prediction of water quality in lakes and reservoirs: Part II-Model calibration, sensitivity analysis and application. Ecol. Model. 96:111-123. DOI: https://doi.org/10.1016/S0304-3800(96)00063-4

Schmidt W, 1928. [Ueber Temperatur and Stabilitaetsverhaltnisse von Seen].[Article in German]. Geographiska Annaler 10:145-177. DOI: https://doi.org/10.2307/519789

Thornton JA, Rast W, Steele A, 1996. Reservoirs. In: D. Chapman (Ed.), Water Quality Assessments, 2nd Ed. Chapman and Hall, London, 369-412.

USACE U.S. Army Corps of Engineers, 1987. Reservoir water quality analysis, Engineer Manual. USA.

Valerio G, Pilotti M, Marti CL, Imberger J, 2012. The structure of basin‐scale internal waves in a stratified lake in response to lake bathymetry and wind spatial and temporal distribution: Lake Iseo, Italy. Limnol. Oceanogr. 57:772-786. DOI: https://doi.org/10.4319/lo.2012.57.3.0772

Vincent WF, Gibbs MM, Spigel RH, 1991. Eutrophication processes regulated by a plunging river inflow. Hydrobiologia 226: 51-63. DOI: https://doi.org/10.1007/BF00007779

Winters K, Lombard P, Riley J, D'Asaro E, 1995. Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289:115-128. doi:10.1017/S002211209500125X. DOI: https://doi.org/10.1017/S002211209500125X

Wüest A, Lorke A, 2003. Small-scale hydrodynamics in lakes. Annu. Rev. Fluid Mech. 35:373-412. doi: 10.1146/annurev.fluid.35.101101.161220. DOI: https://doi.org/10.1146/annurev.fluid.35.101101.161220

Yang K, Koike T, 2005. A general model to estimate hourly and daily solar radiation for hydrological studies. Water Resour. Res. 41:W10403. doi: 10.1029/2005WR003976 DOI: https://doi.org/10.1029/2005WR003976

Zamani B, Koch M, Hodges BR, Fakheri-Fard A, 2018. Pre-impoundment assessment of the limnological processes and eutrophication in a reservoir using three-dimensional modeling: Abolabbas reservoir, Iran. J. Appl. Water Engin. Res. 6:48-61. doi: 10.1080/23249676.2016.1209440. DOI: https://doi.org/10.1080/23249676.2016.1209440

Zamani B, Koch M, 2020. Comparison between two hydrodynamic models in simulating physical processes of a reservoir with complex morphology: Maroon Reservoir. Water 12:814. DOI: https://doi.org/10.3390/w12030814

Original Articles
Edited By
Marco Toffolon, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy
Hydrodynamic modeling, AEM3D, three-dimensional model, reservoir morphology, background potential energy, stratification, mixing
  • Abstract views: 1276

  • PDF: 142
  • HTML: 0
How to Cite
Zamani B, Koch M, Hodges BR. Effects of morphology in controlling propagation of density currents in a reservoir using uncalibrated three-dimensional hydrodynamic modeling: Effects of morphology in propagation of density currents. J Limnol [Internet]. 2020Apr.29 [cited 2021May16];79(3). Available from: https://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2020.1942