Influence of submerged macrophytes on phosphorus in a eutrophic reservoir in a semiarid region

Influence of submerged macrophytes on phosphorus

  • Vanessa Virginia Barbosa | Laboratório de Ecologia Aquática, Centro de Ciência e Tecnologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.
  • Juliana dos Santos Severiano Laboratório de Ecologia Aquática, Centro de Ciência e Tecnologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.
  • Dayany Aguiar de Oliveira Laboratório de Ecologia Aquática, Centro de Ciência e Tecnologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.
  • José Etham de Lucena Barbosa Laboratório de Ecologia Aquática, Centro de Ciência e Tecnologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.


Phosphorus (P) is the main nutrient responsible for the harmful effects caused by the enrichment of aquatic systems, and submerged macrophytes play an important role in this process, since they can both remove and release this nutrient in environmental compartments. The present study aimed to evaluate the influence of submerged macrophytes on P in the water, sediment, and water-sediment interface in a eutrophic reservoir in a semiarid region and to evaluate the relationship between the concentration of this nutrient in macrophyte tissue and that available in the different compartments. Were performed ten collection campaigns, in three reservoir locations: at the entrance of the Paraíba River; in the intermediate area between the river entrance and the dam and at the dam. We observed a difference in the P concentration inside and outside macrophyte banks, and this difference was determined by the abundance and intensity of macrophyte growth and decomposition. In sites with extensive vegetation banks and where decomposition was more intense, macrophytes released P to the water-sediment interface and sediment compartments. By contrast, in sites with smaller vegetation banks and where macrophytes did not show reduced abundance, P was removed from these compartments. The entry of new water originating from river water transfer was an important modifying factor of the physical and chemical characteristics and macrophyte abundance. The zone where the river enters the reservoir was the area most affected by the water transfer. The macrophyte decomposition in this zone resulted in the highest P concentration in the water-sediment interface and sediment compartments, which demonstrates the importance of macrophytes in the fertilization of water bodies and, consequently, in the eutrophication process. In turn, in the dam zone, where the macrophyte banks were more stable and without large variations in abundance, P was removed from the compartments. A relationship between P in macrophyte tissue and that available in the environment was observed, particularly at the water-sediment interface, indicating that this compartment was the main P source for these plants, which demonstrated that these plants store higher amounts of P in nutrient-rich sediment and water, functioning as an indicator of the nutritional status of a reservoir.



PlumX Metrics


Download data is not yet available.


Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G, 2013. Köppen’s climate classification map for Brazil. Meteo. Z. 22: 711-728. DOI:

Angelstein S, Schubert H, 2008. Elodea nuttallii: uptake, translocation and release of phosphorus. Aquat. Bot. 3:208-216. DOI:

APHA, 2012. Standard methods for the examination of 457 water and wastewater. Washington DC: APHA - AWWA - WPCF. 19.

Araújo-Júnior RJ, 2009. [Evolução temporal dos níveis tróficos do açude Epitácio Pessoa, semi-árido Paraibano].[PhD Thesis in Portuguese]. Universidade Estadual da Paraíba.

Baldy V, Thiebaut G, Fernandez C, Sagova-Mareckova M, Korboulewsky N, Monnier Y, Tremolieres M, 2015. Experimental assessment of the water quality influence on the phosphorus uptake of an invasive aquatic plant: Biological responses throughout its phenological stage. PLoS One 10:1-17. DOI:

Barbosa JEL, Medeiros ESF, Brasil J, Cordeiro RS, Crispim MCB, Silva GHG, 2012. Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnol. Bras. 24:103-118. DOI:

Barbosa VV, Barbosa JEL, Hepp LU, Santino MBC, Nery JF, 2017. Anaerobic decomposition of submerged macrophytes in semiarid aquatic systems under different trophic states, Paraíba State, Brazil. Afr. J. Biotechnol. 16:2258-2266. DOI:

Barko JW, Smat RM, 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biol. 10:229-238. DOI:

Bianchini Junior, I, Cunha-Santino, MB, Ribeiro, JU, Penteado, DGB, 2014. Implication of anaerobic and aerobic decomposition of Eichhornia azurea (Sw.) Kunth. on the carbon cycling in a subtropical reservoir. Braz. J. Biol. 74:100-110. DOI:

Canfield DF, Shireman VJ, Colle DE, Halle, WT, Watkins II CR, Maceina MJ, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci. 41:497-501. DOI:

Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8:559. DOI:[0559:NPOSWW]2.0.CO;2

Carpenter SR, Lodge DM, 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341-370. DOI:

Carignan R, Kalff J, 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207:987-989. DOI:

Chamier J, Schachtschneider K, Le Maitre DC, Ashton PJ, van Wilgen BW, 2012. Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. Water SA 38:345-356. DOI:

Correll DL, 1998. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 27: 261. DOI:

Epskamp S, 2015. semPlot: Unified visualizations of structural equation models. Structural equation models. Available at: DOI:

Feijoó C, García, ME, Momo F, Toja J, 2002. Nutrient absorption by the submerged macrophyte Egeria densa Planch.: Effect of ammonium and phosphorus availability in the water column on growth and nutrient uptake. Lirnnetica 21:103-104.

Finkler Ferreira T, Crossetti LO, Motta Marques DML, Cardoso L, Fragoso CR, van Nes EH, 2018. The structuring role of submerged macrophytes in a large subtropical shallow lake: Clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica 69:142-154. DOI:

Gabrielson JO, Perkins MA, Welch EB, 1984. The uptake, translocation and release of phosphorus by Elodea densa. Hydrobiologia 111:43-48. DOI:

Heidbuchel P, Hussner A, 2019. Fragment type and water depth determine the regeneration and colonization success of submerged aquatic macrophytes. Aquat. Sci. 81:1-6. DOI:

Hilborn E, Beasley V, 2015. One health and cyanobacteria in freshwater systems: Animal illnesses and deaths are sentinel events for human health risks. Toxins 7:1374-1395. DOI:

Holmroos H, Horppila J, Niemistö J, Nurminen L, Hietanen S, 2014. Dynamics of dissolved nutrients among different macrophyte stands in a shallow lake. Limnology 16:31-39. DOI:

Horppila J, Nurminen L, 2003. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Res. 37: 468-4474. DOI:

Huang J, Xu C, Ridoutt BG, Wang X, Ren P, 2017. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean Prod. 159:171-179. DOI:

Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM, 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16:471-483. DOI:

Human LRD, Snow GC, Adams JB, Bate GC, Yang S-C, 2015. The role of submerged macrophytes and macroalgae in nutrient cycling: A budget approach. Estuar. Coast. Shelf Sci. 154:169-178. DOI:

Hupfer M, Dollan A, 2003. Immobilisation of phosphorus by iron-coated roots of submerged macrophytes. Hydrobiologia 506-509:635-640. DOI:

Jespersen AM, Christoffersen K, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 109:445-454.

Kuntz K, Heidbüchel P, Hussner A, 2014. Effects of water nutrients on regeneration capacity of submerged aquatic plant fragments. Ann. Limnol. - Int. J. Limnol. 50:155-162. DOI:

Lamers L, Schep S, Geurts J, Smolders A, 2012. [Erfenis fosfaatrijk verleden: Helder water met woekerende waterplanten].[Article in Dutch]. H2O 13:29-31.

Levi PS, Riis T, Alnøe AB, Peipoch M, Mætszke K, Pedersen CB, 2015. Macrophyte complexity controls nutrient uptake in lowland streams. Ecosystems 18:914-931. DOI:

Li J, Yang X, Wang Z, Shan Y, Zheng Z, 2015. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water. Bioresour. Technol. 179:1-7. DOI:

Li W, Li Y, Zhong J, Fu H, Tu J, Fan H, 2018. Submerged macrophytes exhibit different phosphorus stoichiometric homeostasis. Front. Plant Sci. 9:1-9. DOI:

Lone PA, Bhaerdwaj AK, Shah KW, 2014. Macrophytes as powerful natural tools for water quality improvement. Res. J. Bot. 9:24-30. DOI:

Lorenzen CJ, 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12:343-346. DOI:

Lu J, Bunn SE, Burford MA, 2018. Nutrient release and uptake by littoral macrophytes during water level fluctuations. Sci.Total Environ. 622-623:29-40. DOI:

Lu J, Faggotter SJ, Bunn SE, Burford MA, 2017. Macrophyte beds in a subtropical reservoir shifted from a nutrient sink to a source after drying then rewetting. Freshwater Biol. 62:854-867. DOI:

Lürling M, Mackay E, Reitzel K, Spears BM, 2016. A critical perspective on geo-engineering for eutrophication management in lakes. Water Res. 97:1-10. DOI:

Madsen JD, Chambers PA, James WF, Koch EW, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71-84. DOI:

Marengo JA, Alves LM, Alvala RC, Cunha AP, Brito S, Moraes OLL, 2017. Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. Ann. Acad. Bras. Cienc. 90:1973-1985. DOI:

Marengo, JA, Jones, R, Alves, LM, Valverde, MC, 2009. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol. 29:2241-2255. DOI:

Moore MT, Locke MA, Kröger R, 2016. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff. Chemosphere 54:149-160. DOI:

Mosley LM, 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci. Rev. 140:203-214. DOI:

Nascimento PRF, Pereira SMB, Sampaio EVSB, 2008. [Biomassa de Egeria densa nos reservatórios da hidroelétrica de Paulo Afonso-Bahia].[Article in Portuguese]. Planta Daninha 26:481-486. DOI:

Oliveira NMB, Sampaio EVSB, Pereira SMB, Moura Junior AM, 2005. [Capacidade de regeneração de Egeria densa nos reservatórios de Paulo Afonso, BA].[Article in Portuguese]. Planta Daninha 23:263-369. DOI:

Pi N, Tam NF, Wong MH, 2011. Formation of iron plaque on mangrove roots receiving wastewater and its role in immobilization of wastewater-borne pollutants. Mar. Pollut. Bull. 63:402-411. DOI:

Rocha Junior CAN, Costa MRA, Menezes RF, Attayde JL, Becker V, 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnol. Bras. 30:0. DOI:

Rooney N, Kalff J, Habel, C, 2003. The role of submerged macrophyte beds in phosphorus and sediment accumulation in Lake Memphremagog, Quebec, Canada. Limnol. Oceanogr. 48:1927-1937. DOI:

Rosseel Y, 2012. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48:1-36. DOI:

Sampaio EVSB, 2005. [Aproveitamento da macrófita aquática Egeria densa como adubo orgânico].[Article in Portuguese]. Planta Daninha 23:169-174. DOI:

Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM, 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50:8923-8929. DOI:

Silvino RF, Barbosa F, 2015. Eutrophication potential of lakes: an integrated analysis of trophic state, morphometry, land occupation, and land use. Braz. J. Biol. 75:607-615. DOI:

Soares E, 2013. [Seca no Nordeste e a transposição do rio São Francisco].[Article in Portuguese]. Geografias 9:75-86.

Srivastava J, Gupta A, Chandr, H, 2008. Managing water quality with aquatic macrophytes. Rev. Environ. Sci Biotechnol. 7:255-266. DOI:

Tedesco MJ, Gianello C, Bissani C, Bohnen H, Volkweiss SJ, 1995. ]Análise de solo, plantas e outros materiais].[Book in Portuguese]. Departamento de Solos da Universidade Federal do Rio Grande do Sul: 174 pp.

Tong Y, Zhang W, Wang X, Couture R-M, Larssen T, Zhao Y, Lin Y, 2017. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nature Geosci. 10:507-511. DOI:

Trindade CRT, Pereira SA, Albertoni EF, Palma-Silva C, 2010. [Caracterização e importância das macrófitas aquáticas com ênfase nos ambientes límnicos do Campus Carreiros - FURG].[Article in Portuguese]. Cad. Ecol. Aquat. 5:1-22.

Vanderstukken M, Mazzeo N, van Colen W, Declerck SAJ, Muylaert K, 2011. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study. Freshwater Biol. 56:1837-1849. DOI:

Verhofstad MJJM, Alirangues Núñez MM, Reichman,EP, van Donk E, Lamers LPM, Bakker ES, 2017. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: Roles of light, sediment nutrient levels, and propagule density. Aquat. Bot. 141:29-38. DOI:

Wallsten M, 1980. Effects of the growth of Elodea canadensis Michx. in a shallow lake (Lake Tämnaren, Sweden), p. 139-146. In: M. Dokulil, H. Metz and D. Jewson (eds.), Shallow lakes contributions to their limnology. Springer. DOI:

Wang L, Liu Q, Hu C, Liang R, Qiu J, Wang Y, 2018. Phosphorus release during decomposition of the submerged macrophyte Potamogeton crispus. Limnology 19:355-366. DOI:

Wetzel RG, 1975. Limnology. WB Saunders Co., Philadelphia: 743 pp.

Wilson DO, 1972. Phosphate nutrition of the aquatic angiosperm Myriophyllum exalbescens Fern. Limnol. Oceanogr. 17:612-616. DOI:

Wu Y, Wen Y, Zhou J, Wu Y, 2013. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE J. Civ. Eng. 18:323. DOI:

Xing W, Shi Q, Liu H, Liu G, 2016. Growth rate, protein: RNA ratio and stoichiometric homeostasis of submerged macrophytes under eutrophication stress. Knowl. Manag. Aquat. Ecosyst. 25:1-11. DOI:

Yu J, Zhong J, Chen Q, Huang W, Hu L, Zhang Y, Fan C, 2018. An investigation of the effects of capping on internal phosphorus release from sediments under rooted macrophytes (Phragmites australis) revegetation. Environ. Sci. Pollut. Res. 25:24682-24694. DOI:

Zeng L, He F, Dai Z, Xu D, Liu B, Zhou Q, Wu Z, 2017. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake. Ecol. Eng. 106:578-587. DOI:

Zeng Q, Qin L, Li X, 2015. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system. Sci. Total Environ. 536:686-675. DOI:

Zhang C, Liu H, Gao X, Zhang H. 2016. Modeling nutrients, oxygen and critical phosphorus loading in a shallow reservoir in China with a coupled water quality - Macrophytes model. Ecol. Indic. 66:212-219. DOI:

Original Articles
Edited By
Franco Tassi, University of Florence, Italy
Macrophyte banks, Brazil, growth, decomposition, eutrophication, Egeria densa
  • Abstract views: 611

  • PDF: 242
  • HTML: 0
How to Cite
Barbosa VV, Severiano J dos S, de Oliveira DA, Barbosa JE de L. Influence of submerged macrophytes on phosphorus in a eutrophic reservoir in a semiarid region: Influence of submerged macrophytes on phosphorus. J Limnol [Internet]. 2020Feb.3 [cited 2021May16];79(2). Available from: