Diet of tadpoles for five anuran species of northeast Brazil

Diet of tadpoles to five anuran species

  • Airan dos Santos Protázio | airanprotazio@yahoo.com.br Departamento de Ensino, Instituto Federal de Educação, Ciência e Tecnologia da Bahia, Irecê, Bahia, Brazil.
  • Arielson dos Santos Protázio Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil.
  • Vivian Gama Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil.
  • Samantha Vieira Silva Departamento de Biologia, Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil.
  • Carla Giovanna Cruz dos Santos Departamento de Ensino, Instituto Federal de Educação, Ciência e Tecnologia da Bahia, Irecê, Bahia, Brazil.
  • Joanna Karine Gomes de Oliveira Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil.

Abstract

In this study, the diet of tadpoles of five anuran species was described. The species were collected from either lotic or lentic environments in Caatinga and the Atlantic Forest biome of northeast Brazil. The diet of these tadpoles consisted of algae, protozoa, plants, fungi and animals. Diatoms were the most important items within the diet of Leptodactylus natalensis. Trachelomonas, diatoms, Phacus and Scenedesmus were the most important items comprising the diet of Leptodactylus cf. macrosternum. Trachelomonas, Oscillatoria and Scenedesmus were the most important items comprising the diet of Pithecophus nordestinus. Diatoms and Scenodesmus were the most important items of the diet for Rhinella jimi. For Scinax x-signatus, diatoms (Atlantic Forest population), Oscillatoria, undetermined filament and pollen (Caatinga population) were the most important items consumed. Scinax x-signatus and L. natalensis from Atlantic Forest, and L. cf. macrosternum and P. nordestinus from Caatinga had diets that were the most similar. The diversity of items found in the diets of species considered may be attributed to mechanisms used by tadpoles to obtain food, which favour the acquisition of suspended materials that are highly available in the environment. We discuss the possible effects of the relationship between algae and tadpoles and the importance of recording larvae diets to better understand the dynamics of the aquatic environment and the trophic ecology of tadpoles.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Akers EC, Taylor CM, Altig R, 2008. Effects of clay-associated organic material on the growth of Hyla chrysoscelis tadpoles. J. Herpetol. 42:408-410. DOI: https://doi.org/10.1670/07-0282.1

Alford RA, 1999. Resource use, competition, and predation, p. 240-278. In: R.W. McDiarmid and R. Altig (eds.), Tadpole: the biology of anuran larvae. University of Chicago Press, Chicago.

Altig R, Johnston G, 1989. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol. Monogr. 3:81-109. DOI: https://doi.org/10.2307/1466987

Álvarez D, Nicieza AG, 2002. Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct. Ecol. 16 640-648. DOI: https://doi.org/10.1046/j.1365-2435.2002.00658.x

Andrade G, Carnaval AC, 2004. Rhinella jimi. The IUCN Red List of Threatened Species 2004. Available from: dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T54674A11184744.en.

Antón-Garrido B, Romo S, Villena MJ, 2013. Diatom species composition and indices for determining the ecological status of coastal Mediterranean Spanish lakes. An. Jardin Bot. Madrid 70:122-135. DOI: https://doi.org/10.3989/ajbm.2373

Arias MM, Peltzer PM, Lajmanovich RC, 2002. Diet of the giant tadpole Pseudis paradoxa platensis (Anura, Pseudidae) from Argentina. Phyllomedusa 1:97-100. DOI: https://doi.org/10.11606/issn.2316-9079.v1i2p97-100

Bionda C, Gari N, Luque E, Salas N, Lajmanovich RC, Martino A, 2012. [Ecología trófica en larvas de Rhinella arenarum (Anura: Bufonidae) en agroecosistemas y sus posibles implicaciones para la conservación].[Article in Spanish]. Rev. Biol. Trop. 60:771-779. DOI: https://doi.org/10.15517/rbt.v60i2.3998

Bionda C, Luque E, Gari N, Salas NE, Lajmanovich RC, Adolfo L, 2013. Diet of tadpoles of Physalaemus biligonigerus (Leiuperidae) from agricultural ponds in the central region of Argentina. Acta Herpetol. 8:141-146.

Caldas FLS, Silva BD, Santos RA, Carvalho CB, Santana DO, Gomes FFA, Faria RG, 2016. Autoecology of Phyllomedusa nordestina (Anura: Hylidae) in areas of the Caatinga and Atlantic Forest in the State of Sergipe, Brazil. North-Wester. J. Zool. 12:271-285.

Candioti MFV, 2005. Morphology and feeding in tadpoles of Ceratophrys cranwelli (Anura: Leptodactylidae). Acta Zool. 86: 1-11. DOI: https://doi.org/10.1111/j.0001-7272.2005.00178.x

Caramaschi U, 2006. [Redefinição do grupo de Phyllomedusa hypochondrialis, com redescrição de P. megacephala (Miranda-Ribeiro, 1926), revalidação de P. azurea Cope, 1862 e descrição de uma nova espécie (Amphibia, Anura, Hylidae)].[Article in Portuguese]. Arq. Mus. Nac. 64:159-179.

Cejudo-Figueiras C, Álvarez-Blanco I, Bécares E, Blanco S, 2010. Epiphytic diatoms and water quality in shallow lakes: the neutral substrate hypothesis revisited. Mar. Freshwater Res. 61:1457-1467. DOI: https://doi.org/10.1071/MF10018

Colli GR, Costa GC, Garda AA, Mesquita DO, Kopp K, Péres Jr. AK, Valdujo PH, Vieira GHC, Wiederhecker HC, 2003. A critically endangered new species of Cnemidophorus (Squamata, Teiidae) from Cerrado enclave in southwestern Amazonia, Brazil. Herpetologica 59:76-88. DOI: https://doi.org/10.1655/0018-0831(2003)059[0076:ACENSO]2.0.CO;2

Dutra SL, Callisto M, 2005. Macroinvertebrates as tadpole food: importance and body size relationships. Rev. Bras. Zool. 22:923-927. DOI: https://doi.org/10.1590/S0101-81752005000400018

Echeverría DD, Volpedo AV, Mascitti VI, 2007. Diet of tadpoles from a pond in Iguazu National Park, Argentina. Gayana 71:8-14. DOI: https://doi.org/10.4067/S0717-65382007000100002

Frost DR, 2020. Amphibian Species of the World: an Online Reference. Version 6.0. Available from: research.amnh.org/herpetology

Gosner KL, 1960. A simplified table for staging anuran embryos larvae with notes on identification. Herpetologica 16:183-190.

Hammer Ø, Harper DAT, Ryan PD, 2017. PAST: Paleontological statistics software package for education and data analysis, version 3.16. Available from: http://folk.uio.no/ohammer/past/.

Hoff K, Blaustein AR, McDiarmid RW, Altig R, 1999. Behavior: interactions and their consequences, p. 215-239. In: R.W. McDiarmid and R. Altig (eds.), Tadpole: the biology of anuran larvae. University of Chicago Press, Chicago.

Huckembeck S, Alves LT, Loebmann D, Garcia AM, 2016. What largest tadpoles feed on? A detailed analysis of the diet composition of Pseudis minuta tadpoles (Hylidae: Dendropsophini). Anais da Academia Brasileira de Ciências 8:1397-1400. DOI: https://doi.org/10.1590/0001-3765201620150345

Iwai N, Kagaya T, 2005. Growth of japanese toad (Bufo japonicus formosus) tadpoles fed different food items. Current Herpetology 24:85-89. DOI: https://doi.org/10.3105/1345-5834(2005)24[85:GOJTBJ]2.0.CO;2

Kupferberg SJ, Marks JC, Power ME, 1994. Effects of variation in natural algal and detrital diets on larval anuran (Hyla regilla) life- history traits. Copeia 1994: 446-457. DOI: https://doi.org/10.2307/1446992

Loman J, 2001. Effects of tadpoles grazing on periphytic algae in ponds. Wetl. Ecol. Manag. 9:135-139. DOI: https://doi.org/10.1023/A:1011106417883

Nathan JM, James VG, 1972. The role of protozoan in the nutrition of tadpoles. Copeia 1972:669-679. DOI: https://doi.org/10.2307/1442727

Pollo FE, Martina LC, Bionda CL, Salas NE, Martino AL, 2015. Trophic ecology of syntopic anuran larvae, Rhinella arenarum (Anura: Bufonidae) and Hypsiboas cordabae (Anura: Hylidae): its relation to the structure of periphyton. Ann. Limnol. 51:211-217. DOI: https://doi.org/10.1051/limn/2015015

Protázio AS, Albuquerque RL, Falkenberg LM, Mesquita DO, 2015. Niche differentiation of an anuran assemblage in temporary ponds in the Brazilian semiarid Caatinga: influence of ecological and historical factors. Herpetol. J. 25:109-121.

Pryor GS, 2003. Growth rates and digestive abilities of bullfrog tadpoles (Rana catesbeiana) fed algal diets. J. Herpetol. 37:560-566. DOI: https://doi.org/10.1670/153-02N

Ranvestel AW, Lips KR, Pringle CM, Whiles MR, Bixby R, 2004. Neotropical tadpoles influence stream benthos: evidence for the ecological consequence of decline in amphibian populations. Freshwater Biol. 49:274-285. DOI: https://doi.org/10.1111/j.1365-2427.2004.01184.x

Rodrigues MT, Caramaschi U, Mijares A, 2010. Scinax x-signatus. The IUCN Red List of Threatened Species 2010. Available from. dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T56005A11404900.en.

Rodrigues R, Albuquerque RL, Santana DJ, Laranjeiras DO, Protázio AS, França FGR, Mesquita DO, 2013. Record of the occurrence of Lachesis muta (Serpentes, Viperidae) in an Atlantic Forest fragment in Paraíba, Brazil, with comments on the species’ preservation status. Biotemas 26:283-286. DOI: https://doi.org/10.5007/2175-7925.2013v26n2p283

Rossa-Feres DC, Jim J, Fonseca MG, 2004. Diets of tadpoles from a temporary pond in southeastern Brazil (Amphibia, Anura). Rev. Bras. Zool. 21:745-754. DOI: https://doi.org/10.1590/S0101-81752004000400003

Sá RO, Grant T, Camargo A, Heyer WR, Ponssa ML, Stanley E, 2014. Systematics of the neotropical genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): phylogeny, the relevance of non-molecular evidence, and species accounts. South Am. J. Herpetol. 9:1-128. DOI: https://doi.org/10.2994/SAJH-D-13-00022.1

Santos EM, Amorim FO, 2005. Modo reprodutivo de Leptodactylus natalensis Lutz, 1930 (Amphibia, Anura, Leptodactylidae). Rev. Bras. Zoociências 7:39-45.

Santos EM, Amorim FO, 2006. Cuidado parental em Leptodactylus natalensis (Amphibian, Anura, Leptodactylidae). Iheringia 96:491-494. DOI: https://doi.org/10.1590/S0073-47212006000400015

Santos FJM, Protázio AS, Moura CWN, Juncá FA, 2016. Diet and food resource partition among benthic tadpoles of three anuran species in Atlantic Forest tropical streams. J. Freshwater Ecol. 31:53-60. DOI: https://doi.org/10.1080/02705060.2015.1015109

Seale DB, 1980. Influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem. Ecology 61:1531-1550. DOI: https://doi.org/10.2307/1939059

Sousa Filho IF, Branco CC, Carvalho-e-Silva AMPT, Silva GR, Sabagh LT, 2007. The diet of Scinax angrensis (Lutz) tadpoles in an area of the Atlantic Forest (Mangaratiba, Rio de Janeiro) (Amphibia, Anura, Hylidae). Rev. Bras. Zool. 24:965-970. DOI: https://doi.org/10.1590/S0101-81752007000400012

Steinwascher K, Travis J, 1983. Influence of food quality and quantity on early larval growth of two anurans. Copeia 1:238-242. DOI: https://doi.org/10.2307/1444720

Wells KD, 2007. The ecology and behavior of amphibians. University of Chicago Press, Chicago. DOI: https://doi.org/10.7208/chicago/9780226893334.001.0001

Published
2020-03-09
Info
Issue
Section
Original Articles
Edited By
Diego Fontaneto, CNR-IRSA, Verbania, Italy
Keywords:
Food, larvae, permanent stream, temporary pond, lagoon
Statistics
  • Abstract views: 493

  • PDF: 220
  • HTML: 0
How to Cite
1.
Protázio A dos S, Protázio A dos S, Gama V, Silva SV, Santos CGC dos, Oliveira JKG de. Diet of tadpoles for five anuran species of northeast Brazil: Diet of tadpoles to five anuran species. J Limnol [Internet]. 2020Mar.9 [cited 2021May7];79(2). Available from: https://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2020.1912