Classification of the Tatra Mountain lakes in terms of the duration of their ice cover (Poland and Slovakia)

Ice cover classification of the Tatra Mountain lakes

Vysne Wahlenbergovo pleso; credit: Kristo (https://commons.wikimedia.org/wiki/User:Kristo~commonswiki)
Submitted: 17 June 2019
Accepted: 27 November 2019
Published: 11 December 2019
Abstract Views: 846
PDF: 413
HTML: 35
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

This paper presents the results of a classification of the Tatra lakes based on the duration of their ice cover, altitude, volume, and potential incoming solar radiation (PISR). It is embedded in the context of the impact of current climate change on the mountain environment. A digital elevation model, morphometric data, satellite imagery from the winter seasons of 2015-2017 and the Wrocław taxonomy method were used in the study. It was found that the order of freezing and thawing of the lakes investigated may change from year to year. The relationship between ice cover duration and altitude is clearly weakened by variations in lake volumes, with insolation having a noticeably lesser effect. Determining the duration of ice cover of the lakes over several seasons facilitates identifying the similarities and dissimilarities between them. Five groups of lakes displaying similar characteristics were identified as well as 2 groups of lakes with highly individual characteristics. Based on the data obtained, it can be concluded that the duration of ice cover on the Tatra lakes has been shortening noticeably over the last 100 years. Small high-altitude lakes seem to be most vulnerable to climate change.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Apsite E, Elferts D, Zubaničs A, Latkovska I, 2014. Longterm changes in hydrological regime of the lakes in Latvia. Hydrol. Res. 45: 308–321. DOI: https://doi.org/10.2166/nh.2013.435
Assel R, Cronk K, Norton D, 2003. Recent trends in laurentian great lakes ice cover. Clim. Chang. 57: 185-204. DOI: https://doi.org/10.1023/A:1022140604052
Balon J, Jodłowski M, Krąż P, 2015. Tatra Mountains – Topography. In: Atlas of the Tatra Mountains. Abiotic Nature, sheet I.3, Tatrzański Park Narodowy, Zakopane.
Barry R, Gan TY, 2011. The global cryosphere. Past, Present, and Future. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511977947
Benson BJ, Magnuson JJ, Jensen OP, Card VM, Hodgkins G, Korhonen J, Livingstone DM, Stewart KM, Weyhenmeyer GA, Granin NG, 2012. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 112: 299–323. DOI: https://doi.org/10.1007/s10584-011-0212-8
Blenckner T, 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiol. 533: 1–14. DOI: https://doi.org/10.1007/s10750-004-1463-4
Brown LC, Duguay CR, 2010. The response and role of ice cover in lake–climate interactions. Prog. Phys. Geogr. 34: 671–704. DOI: https://doi.org/10.1177/0309133310375653
Choiński A, Ptak M, Strzelczak A, 2013. Areal variation in ice cover thickness on lake Morskie Oko (Tatra Mountains). Carpath. J. Earth. Env. 8: 97-102.
Choiński A, Ptak M, Skowron R, Strzelczak A, 2015a. Changes in ice phenology on Polish lakes from 1961–2010 related to location and morphometry. Limnol. 53: 42–49. DOI: https://doi.org/10.1016/j.limno.2015.05.005
Choiński A, Ptak M, Strzelczak A, 2015b. Changeability of accumulated heat content in Alpine-type lakes. Pol. J. Environ. Stud. 24, 6: 2363-2369. DOI: https://doi.org/10.15244/pjoes/58871
Choiński A, 2017. Ice phenomena on Lake Wielki Staw in the Valley of Five Polish Lakes. Limnol. Rev. 17: 71-77. DOI: https://doi.org/10.1515/limre-2017-0007
Engel Z, Mentlík P, Braucher R, Křížek M, Pluháčková M, Aster Team, 2017. 10Be exposure age chronology of the last glaciation of the Roháčská Valley in the Western Tatra Mountains, central Europe. Geomorphology 293: 130–142. DOI: https://doi.org/10.1016/j.geomorph.2017.05.012
ESRI 2017. ArcGIS Desktop: Release 10.5. Redlands, CA.
Falarz M, 2002. Klimatyczne przyczyny zmian i wieloletniej zmienności występowania pokrywy śnieżnej w polskich Tatrach. Prz. Geogr.74: 83-106. [Article in Polish]
Florek K, Łukaszewicz J, Perkal J, Steinhaus H, Zubrzycki S, 1951. Taksonomia wrocławska. Prz. Antropol. 17: 193-211.
Fu P, Rich PM, 2002. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 37: 25–35. DOI: https://doi.org/10.1016/S0168-1699(02)00115-1
Gądek B, 2014. Climatic sensitivity of the non-glaciated mountains cryosphere (Tatra Mts., Poland and Slovakia). Glob. Planet. Chang. 121, 2: 1-8. DOI: https://doi.org/10.1016/j.gloplacha.2014.07.001
Gądek B, Szypuła B, 2015. Contemporary cryosphere. In : Atlas of the Tatra Mountains. Abiotic Nature, sheet, V.1, Tatrzański Park Narodowy, Zakopane.
Gregor V, Pacl J, 2005. Hydrológia tatranských jazier. Acta Hydrol. Slovac. 6: 161–187.
Hampton SE, Galloway AWE, Powers SM, Ozersky T, Woo KH, Batt RD, Labou SG, O'Reilly CM, Sharma S, Lottig NR, Stanley EH, North RL, Stockwell JD, Adrian R, Weyhenmeyer GA, Arvola L, Baulch HM, Bertani I, Bowman Jr. LL, Carey CC, Catalan J, Colom‐Montero W, Domine LM, Felip M, Granados I, Gries C, Grossart HP, Haberman J, Haldna M, Hayden B, Higgins SN, Jolley JC, Kahilainen KK, Kaup E, Kehoe MJ, MacIntyre S, Mackay AW, Mariash HL, McKay RM, Nixdorf B, Nõges P, Nõges T, Palmer M, Pierson D, Post DM, Pruett MJ, Rautio M, Read JS, Roberts SL, Rücker J, Sadro S, Silow EA, Smith DE, Sterner RW, Swann GEA, Timofeyev MA, Toro M, Twiss MR, Vogt RJ, Watson SB, Whiteford EJ, Xenopoulos MA, 2017. Ecology under lake ice. Ecol. Lett. 20: 98–111. DOI: https://doi.org/10.1111/ele.12699
Hellwig Z, 1968. Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom ich rozwoju oraz zasoby i strukturę wykwalifikowanych kadr. Prz. Stat. 4: 307–26.
Hodgkins GA, James IC, Huntington TG, 2002. Historical changes in lake ice-out dates as indicators of climate change in New England. Int. J. Climatol. 22: 1819-1827. DOI: https://doi.org/10.1002/joc.857
Hutchinson GE, Löffler H, 1956. The thermal classification of lakes. Proc. Nat. Acad. Sci. 42: 84–86. DOI: https://doi.org/10.1073/pnas.42.2.84
IPCC 2013. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, (eds.)]., Cambridge University Press, Cambridge-New York.
Kopáček J, Hardekopf D, Majer M, Pšenáková P, Stuchlík E, Veselý J, 2004. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountains region, Slovakia-Poland. J. Limnol. 63: 143–156. DOI: https://doi.org/10.4081/jlimnol.2004.143
Ptak et al., 2019
MJ, Ptacnik R, Rasconi S, Hager HH, 2017. Irregular changes in lake surface water temperature and ice cover in subalpine Lake Lunz, Austria. Inland Waters, 7, 1 : 27-33. DOI: https://doi.org/10.1080/20442041.2017.1294332
Kirillin G, Leppäranta M, Terzhevik A, Granin N, Bernhardt J, Engelhardt Ch, Efremova T, Golosov S, Palshin N, Sherstyankin P, Zdorovennova G, Zdorovennov R, 2012. Physics of seasonally ice-covered lakes: a review. Aquat. Sci. 74 : 659–682. DOI: https://doi.org/10.1007/s00027-012-0279-y
Lajczak A, Margielewski W, Raczkowska Z, Swiechowicz J, 2014. Contemporary geomorphic processes in the Polish Carpathians under changing human impact. Episodes 37, 1 : 21-32. DOI: https://doi.org/10.18814/epiiugs/2014/v37i1/003
Leppäranta M, 2015. Freezing of lakes and the evolution of their ice cover, Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-29081-7
Leppäranta M, 2010. Modelling the formation and decay of lake ice. In: DG George (ed.), The impact of climate change on european lakes. Aquatic Ecology Series 4: 63–83. DOI: https://doi.org/10.1007/978-90-481-2945-4_5
Lewis WM, 1983. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40: 1779–1787. DOI: https://doi.org/10.1139/f83-207
Lindner L, Dzierżek J, Marciniak B, Nitychoruk J, 2003. Outline of Quaternary glaciations in the Tatra Mts., their development, age, and limits. Geol. Quat. 47: 269–280.
Lityński A, 1914. O temperaturze stawów tatrzańskich. Pamięt. Tow. Tatr. 35: 69-73.
Lityński A, 1917. Jeziora tatrzańskie i zamieszkująca je fauna wioślarek. Spraw. Kom. Fizjogr. PAU 51: 1-88.
Livingstone D M, 1997. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Clim. Chang. 37: 407–439.
Łupikasza E, Szypuła B, 2019. Vertical climatic belts in the Tatra Mountains in the light of current climate change. Theor. Appl. Clim. 136: 249-264. DOI: https://doi.org/10.1007/s00704-018-2489-2
Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card VV, Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski VS, 2000. Historical trends in lake and river ice cover in the northern hemisphere. Science 289 (5485):1743-6. DOI: https://doi.org/10.1126/science.289.5485.1743
Makos M, Rinterknecht V, Braucher R, Tołoczko-Pasek A, Aster Team 2018. Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains - Revised deglaciation chronology based on the 10Be exposure age dating. Quat. Sci. Rev. 187: 130-156. DOI: https://doi.org/10.1016/j.quascirev.2018.03.006
Marszelewski W, Skowron R, 2006. Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes. Hydrolog. Sci. J. 51, 2: 336-349. DOI: https://doi.org/10.1623/hysj.51.2.336
Mercik JW, Kołodziejczyk W, 1986. Taxonomy approach to a cabinet formation problem. Math. Soc. Sci. 12: 159-167. DOI: https://doi.org/10.1016/0165-4896(86)90034-X
Mirek Z, Piękoś-Mirkowa H, 1992. Plant cover of the Polish Tatra Mountains (S. Poland). Veröff. Geobot. Inst. ETH, Stiftung Rubel, Zürich 707: 177-199.
Mishra V, Cherkauer KA, Bowling LC, Huber M, 2011. Lake ice phenology of small lakes: impacts of climate variability in the Great Lakes region. Glob. Planet Chang. 76: 166-185. DOI: https://doi.org/10.1016/j.gloplacha.2011.01.004
MPHP (mapa podziału hydrologicznego Polski) 2007. Zakład Hydrografii i Morfologii Koryt Rzecznych, IMGW, Warszawa.
Novikmec M, Svitok M, Kočický D, Šporka F, Bitušík, P, 2013. Surface water temperature and ice cover of Tatra Mountains lakes depend on altitude, topographic shading, and bathymetry. Arct., Antarct. Alp. Res. 45, 1: 77-87. DOI: https://doi.org/10.1657/1938-4246-45.1.77
Nõges P, Nõges T, 2014. Weak trends in ice phenology of Estonian large lakes despite significant warming trends. Hydrobiologia 731 : 5–18. DOI: https://doi.org/10.1007/s10750-013-1572-z
Pacl J, Wit-Jóźwik K, 1974. Teplota wod, p. 181-204. In: M. Konček (ed.), Klimat Tatr. VEDA, Bratislava. [Chapter in Slovak]
Palecki M A, Barry RG, 1985. Freeze-up and break-up of lakes as an index of temperature changes during the transition sasons: a case study for Finland. J. Appl. Meteorol. 25, 7: 893-902. DOI: https://doi.org/10.1175/1520-0450(1986)025<0893:FUABUO>2.0.CO;2
Pedich W, 1977: Application of Wroclaw taxonomy for evaluation of the similarity between electrocardiograms from twins. Adv. Cardiol. 19: 42-3. DOI: https://doi.org/10.1159/000399619
Pociask-Karteczka, J, Choiński A, 2012: Recent trends in ice cover duration for lake Morskie Oko (Tatra Mountains, East-Central Europe). Hydrol. Res. 43, 4: 500–506. DOI: https://doi.org/10.2166/nh.2012.019
Ptak M, Wrzesiński D, Choiński A, 2017. Long-term changes in the hydrological regime of high mountain Lake Morskie Oko (Tatra Mountains, Central Europe). J. Hydrol. Hydromech., 65, 2: 146–153. DOI: https://doi.org/10.1515/johh-2017-0005
Ptak M, Tomczyk AM, Wrzesiński B, Bednorz E, 2019. Effect of teleconnection patterns on ice conditions in lakes in lowland Poland. Theor. Appl. Climatol. 1-9. DOI: https://doi.org/10.1007/s00704-019-02929-2
Rączkowska Z, 2007. Współczesna rzeźba peryglacjalna wysokich gór Europy. Pr. Geogr. PAN IGiPZ 212, Warszawa.
Runge J, 2007. Metody badań w geografii społeczno-ekonomicznej, Wydaw. Uniw. Śląskiego, Katowice.
Senetra A, Szarek-Iwaniuk P, 2019. The implementation of the Wroclaw taxonomic method for the identification and evaluation of problem areas in the Warmia and Mazury region in Poland – a case study. Socio-Econ. Plan. Sci. 67C: 43-57. DOI: https://doi.org/10.1016/j.seps.2018.09.003
Sharma S, Magnuson JJ, Batt RD, Winslow LA, Korhonen J, Aono Y, 2016. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years. Sci. Rep. 6: 25061. DOI: https://doi.org/10.1038/srep25061
Sharma S, Blagrave K, Magnuson JJ, O’Reilly CM, Oliver S, Batt RD, Magee MR, Straile D, Weyhenmeyer GA, Winslow L, Woolway RI, 2019. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change. 9: 227-231. DOI: https://doi.org/10.1038/s41558-018-0393-5
Skowron R, 2009. Criteria of thermal classifications of lakes. Bull. Geogr., Phisical Geogr. Ser. 2: 93-108. DOI: https://doi.org/10.2478/bgeo-2009-0014
Šporka F, Livingstone DM, Stuchlík E, Turek J, Galas J, 2006. Water temperatures and ice cover in lakes of the Tatra Mountains. Biol., Bratislava 61, Suppl.18: 77–90. DOI: https://doi.org/10.2478/s11756-006-0121-x
Szaflarski J, 1936. Nouvelles études sur le régime thermique des lacs de la Haute-Tatra . Rev. géogr. alp. 24, 2: 369-380. DOI: https://doi.org/10.3406/rga.1936.3532
Wang W, Lee X, Xio W, Liu S, Schultz N, Wang Y, Zhang M, Zhao L, 2018. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 11: 410–414. DOI: https://doi.org/10.1038/s41561-018-0114-8
Weyhenmeyer GA, Livingstone DM, Meili M, Jensen O, Benson B, Magnuson JJ, 2011. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Change Biol. 17: 268–275. DOI: https://doi.org/10.1111/j.1365-2486.2010.02249.x
Wierzchoń ST, Kłopotek MA, 2018. Modern algorithms of cluster analysis. Studies in Big Data 34, Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-69308-8
Williams G, Layman KL, Stefan HG, 2004. Dependence of lake ice on climate, geographic and bathymetric variables. Cold Reg. Sci. Technol. 40: 145-164. DOI: https://doi.org/10.1016/j.coldregions.2004.06.010
Woolway RI, Merchant ChJ, 2019. Worlwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12: 271-276. DOI: https://doi.org/10.1038/s41561-019-0322-x
Wrzesiński D, Choiński A, Ptak M, 2016. Effect of North Atlantic Oscillation on the hydrological conditions of Lake Morskie Oko (Carphatian Mountains). Bull. Geogr., Phisical Geogr. Ser. 10: 95–105. DOI: https://doi.org/10.1515/bgeo-2016-0007
Van Cleave K, Lenters JD, Wang J, Verhamme EM, 2014. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Nino winter of 1997-1998. Limnol. Oceanogr. 59: 1889-1898. DOI: https://doi.org/10.4319/lo.2014.59.6.1889
Zasadni J, Kłapyta P, 2009. An attempt to assess the modern and little Ice Age climatic snowline altitude in the Tatra Mountains. Landf. Anal. 10: 124-133.
Zasadni J, Kłapyta P, 2014. The Tatra Mountains during the last glacial maximum. J. Maps 10, 3: 440-456. DOI: https://doi.org/10.1080/17445647.2014.885854
Żmudzka E, 2011. Contemporary climate changes in the high mountain part of the Tatras. Misc. Geogr. 15: 93-102. DOI: https://doi.org/10.2478/v10288-012-0005-6

Edited by

Mariano Bresciani, CNR-IREA Milan, Italy

How to Cite

Gadek, Bogdan, Mirosław Szumny, and Bartłomiej Szypuła. 2019. “Classification of the Tatra Mountain Lakes in Terms of the Duration of Their Ice Cover (Poland and Slovakia): Ice Cover Classification of the Tatra Mountain Lakes”. Journal of Limnology 79 (1). https://doi.org/10.4081/jlimnol.2019.1920.

List of Cited By :

Crossref logo