Spatio-temporal variation of cyanobacteria and cyanotoxins in public supply reservoirs of the semi-arid region of Brazil

Cyanobacteria and cyanotoxins in reservoirs of the semi-arid region

  • Ranielle Daiana dos Santos Silva Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.
  • Juliana Santos Severiano | Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.
  • Dayany Aguiar de Oliveira Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.
  • Camila Ferreira Mendes Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.
  • Vanessa Virgínia Barbosa Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.
  • Mathias Ahii Chia Department of Botany, Ahmadu Bello University, Zaria, Nigeria.
  • José Etham de Lucena Barbosa Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil.


Cyanobacteria harmful algal blooms (CyanoHABs) have become increasingly frequent and intense in public supply reservoirs as a result of eutrophication and global climate change. The semi-arid region of Brazil has a well documented history of CyanoHABs but the underlying factors that control the excessive proliferation of these organisms and the production of their bioactive secondary metabolites are not comprehensively understood. This study aimed to identify the environmental factors that explain the spatial and temporal variations in the abundance of cyanobacteria and the concentration of cyanotoxins (microcystins, saxitoxins, and cylindrospermopsin) in semi-arid reservoirs. The following hypotheses were tested: (a) the largest biovolumes of potential toxin producing cyanobacteria occur when cyanotoxin concentrations are highest; and (b) the environmental factors that explain variations in biovolume of cyanobacteria also explain changes in cyanotoxins concentrations. Samples were taken from four reservoirs located in the Northeast region of Brazil, over a three-month period (October 2016 and February and June 2017). Of the 24 species of cyanobacteria identified, 13 were potentially toxin-producing. Physicochemical variables such as water volume of the reservoir, water transparency, soluble reactive phosphorus, and total phosphorus explained the abundance of cyanobacteria and the levels of cyanotoxins. These results corroborate the hypothesis that similar physicochemical conditions influence the abundance and diversity of cyanobacteria and cyanotoxins. Cyanobacterial blooms composed of more than one potential toxin producing species were observed in the studied reservoirs, where potential microcystin-producing species were the most common. Microcystins and saxitoxins were detected in all the reservoirs studied, while cylindrospermopsin and the cyanobacterium Cylindrospermopsis raciborskii were simultaneously recorded in only one reservoir (Camalaú Reservoir). Cylindrospermopsin was only detected in a reservoir for the first time in the State of Paraíba. Canonical redundancy analysis showed that the cyanotoxins were related to potential toxin producing species. These results corroborate the proposed hypothesis that there is a correlation between cyanotoxins and the biomass of potential producers. Also, there were situations where cyanotoxins were detected without the presence of potential producers. These results demonstrate the need for reassessment of potential toxin producing species of cyanobacteria in semi-arid reservoirs. This may lead to the identification and characterization of novel producers of these bioactive secondary metabolites.



PlumX Metrics


Download data is not yet available.


Alvares CA, Stape JL, Sentelhas PC, de Moraes G, Leonardo J, Sparovek G, 2013. Köppen's climate classification map for Brazil. Meteorol. Z. 22:711-728. DOI:

Antunes JT, Leão PN, Vasconcelos VM, 2015. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front. Microbiol. 6: 473. DOI:

Aragão-Tavares NKC, Moura AN, Bittencourt-Oliveira MC, 2013. Planktonic Cyanobacteria forming blooms in reservoirs of northeastern Brazil. Rev. Bras. Cienc. Agrar. 8:662-668. DOI:

Aragão-Tavares NKC, Moura AN, Dantas ÊW, 2017. Persistence and stability of phytoplankton communities in eutrophic reservoirs of northeastern Brazil. Braz J Bot. 40:749-759. DOI:

Araújo LE, Neto JMM, Sousa FAS, 2009. Classification of annual rainfall and the rainy quarter of the year in the Paraíba river basin using Rain Anomaly Index (RAI). Rev. Ambient. Água. 4: 93-110. DOI:

Armah A, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O'Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, 2013. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environ. Sci. Process Impacts 15:1979-2003. DOI:

APHA, 2012. Standard methods for the examination of water and wastewater. APHA, Wahsington DC.

Barbosa JEL, Medeiros ESFM, Brasil J, Cordeiro RS, Crispim MCB, Silva GHG, 2012. Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnol Bras. 24:103-118. DOI:

Bernard C, Ballot A, Thomazeau S, Maloufi S, Furey A, Mankiewicz-Boczek J, Pawlik-Skowrońska B, Capelli C, Salmaso N, 2016. Appendix 2: Cyanobacteria associated with the production of cyanotoxins. In: J. Meriluoto, L. Spoof and G.A. Codd (eds.), Handbook of cyanobacterial monitoring and cyanotoxin analysis. J. Wiley & Sons, Ltd, Chichester. DOI:

Bittencourt-Oliveira MC, Piccin-Santos V, Kujbida P, Moura AN, 2011. Cylindrospermopsin in water supply reservoirs in Brazil determined by immunochemical and molecular methods. J. WaterResour. 3:349-355. DOI:

Bittencourt-Oliveira MC, Santos DMS, Moura NA, 2010. Toxic cyanobacteria in reservoirs in northeastern Brazil: detection using a molecular method. Braz. J. Biol. 70:1005-1010. DOI:

Bittencourt-Oliveira MCD, Piccin-Santos V, Moura AN, Aragão-Tavares NK, Cordeiro-Araújo MK, 2014. Cyanobacteria, microcystins and cylindrospermopsin in public drinking supply reservoirs of Brazil. Na. Acad. Bras. Cienc. 86:297-310. DOI:

Boopathi T, Ki JS, 2014. Impact of environmental factors on the regulation of cyanotoxin production. Toxins 6:1951-1978. DOI:

Bouvy M, Molica M, Oliveira S, Marinho M, Beker B, 1999. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquat. Microb. Ecol. 20:285-297. DOI:

Brasil J, Attayde JL, Vasconcelos FR, Dantas DD, Huszar VL, 2016. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770:145-164. DOI:

Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E, 2017. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and evaluation toxicological risk to human health. Arch. Toxicol. 91:1049-1130. DOI:

Cao X, Wang J, Liao J, Sun J, Huamg Y, 2016. The threshold response of phytoplankton community to nutriente gardient in a shallow eutrophic Chinese lake. Ecol. Indic. 61:258-267. DOI:

Carlson RE, 1977. Atrophic state index for lakes. Limnol. Oceanogr. 22:361-369. DOI:

Carmichael WW, 1992. Cyanobacteria secondary metabolites - the cyanotoxins. J. Appl. Bacteriol. 72:445-459. DOI:

Chia MA, Cordeiro-Araújo MK, Lorenzi AS, Bittencourt-Oliveira MCD, 2017. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions. Ecotox. Environ. Safe. 142:189-199. DOI:

Chia MA, Jankowiak JG, Kramer BJ, Goleski JA, Huang IS, Zimba PV, Bittencourt-Oliveira MC, Gobler CJ, 2018. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. Harmful Algae 74:67-77. DOI:

Chorus I, Bartram J, 1999. Toxic cyanobacteria in water: a guide to the public health consequences, monitoring and management. Spon Press, London: 440 pp. DOI:

Costa IAS, Azevedo SMF, Senna PAC, Bernardo RR, Costa SM, Chellappa NT, 2006. Occurrence of toxin-producing cyanobacteria blooms in a Brazilian semiarid reservoir. Braz. J. Biol. 66:211-219. DOI:

Cunha DGF, Dodds WK, Loiselle SA, 2018. Factors related to water quality and thresholds for microcystin concentrations in subtropical Brazilian reservoirs. Inland Waters 8:368-380. DOI:

Dalu T, Wasserman RJ, 2018. Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. Sci. Total Environ. 643:835-841. DOI:

Dantas EW, Moura AN, Bittencourt-Oliveira MDC, 2011. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. An. Acad. Bras. Cienc. 83:1327-1338. DOI:

Descy JP, Leprieur F, Pirlot S, Leporcq B, Van Wichelen J, Peretyatkp A, Teissier S, Codd GA, Triest L, Vyverman W, Wilmotte A, 2016. Identifying the factors diterming blooms of cyanobacteria in a set of shallow lakes. Ecol .Inform. 34:129-138. DOI:

Dolman AM, Rücker J, Pick FR, Fastner J, Rohrlack T, Mishke U, Wiedner C, 2012. Cyanobacteria and Cyanotoxins: The influence of nitrogen versus phosphorus. PloS One 7:e38757. DOI:

Downing TG, Phelan RR, Downing S, 2015. A potential physiological role for cyanotoxins in cyanobacteria of arid environments. J. Arid. Environ. 112:147-151. DOI:

Figueredo C, Pinto-Coelho RM, Lopes AMMB, Lima PHO, Gücker B, Giani A, 2016. From intermittent flowering to persistent cyanobacteria: identifying the main vectors in an urban tropical reservoir. J. Limnol. 75:445-454. doi: 10.4081/jlimnol.2016.1330. DOI:

Fortin N, Aranda-Rodriguez R, Jing H, Pick F, Bird D, Greer CW, 2010. Detection of microcystin – producing cyanobacteria in Missiquoi Bay, Quebec, Canada, using quantitative PCR. Appl. Environ. Microb. 76:5105-5112. DOI:

Freitas EC, Pinheiro C, Rocha C, Loureiro S, 2014. Can mixtures of cyanotoxins represent a risk to the zooplankton? The case study of Daphnia magna Straus exposed to hepatotoxic and neurotoxic cyanobacterial extracts. Harmful Algae 31:143-152. DOI:

Fonseca JR, Vieira PCS, Kujbida P, Costa IAS, 2015. Cyanobacterial occurrence and detection of microcystins and saxitoxins in reservoirs of the Brazilian semi-arid. Acta Limnol. Bras. 27: 8-92. DOI:

Funari E, Testai E, 2008. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38:97-125. DOI:

Gao Y, Cornwell JC, Stoecker DKE, Owens MS, 2012. Effects of pH increase by cyanobacteria on sediment nutrient fluxes and nitrification-denitrification coupled in a shallow freshwater estuary. Biogeosciences 9:2697-2710. DOI:

Ger KA, Hansson LA, Lürling M, 2014. Understanding cyanobacteria‐zooplankton interactions in a more eutrophic world. Freshwater Biol. 59:1783-1798. DOI:

Gkelis S, Zaoutsos N, 2014. Cyanotoxin occurrence and potentially toxin producing cyanobacteria in freshwaters of Greece: A multi-disciplinary approach. Toxicon 78:1-9. DOI:

Graham JL, Jones JR, Jones SB, Downing JA, Clevenger TE, 2004. Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. Water Res. 38:4395-4404. DOI:

Hackett JD, Wisecaver JH, Brosnahan ML, Kulis DM, Anderson DM, Bhattacharya D, Erdner DL, 2012. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol. 30:70-78. DOI:

Hayes NM, Vanni MJ, 2018. Microcystin concentrations can be predicted with phytoplankton biomass and watershed morphology. Inland Waters 8:273-283. DOI:

Hillebrand H, Dŭrselen C, Kírsctel D, Polligher U, Zohary T, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403-424. DOI:

Huang J, Ji M, Xie Y, Wang S, He Y, Ran J, 2016. Global semi-arid climate change over last 60 years. Clim. Dynam. 46:1131-1150. DOI:

Jespersen AM, Christoffersen K, 1987. Measurements of chlorophyll-a from phytoplankton usig etanol as extraction solvente. Arch. Hydrobiol. 109 445-454.

Jones GJ, Orr PT, 1994. Release and degradation of microcystin following algicide treatment of a Microeystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res. 28: 871-876. DOI:

Jovem-Azevêdo D, Bezerra-Neto JF, Azevêdo EL, Gomes WIA, Molozzi J, Feio MJ, 2019. Dipteran assemblages as functional indicators of extreme droughts. J. Arid Environ. 164:12-22. DOI:

Kaebernick M, Neilan BA, 2001. Ecological and molecular investigations of cyanotoxin production. Microb. Ecol. 35:1-9. DOI:

Komárek J, 2013. Süßwasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota. rd part: Heterocytous Genera. Springer Spektrum: 1130 pp. DOI:

Komárek J, Anagostidis K, 1989. Modern approach to the classification system of cyanophytes 4- Nostocales. Arch. Hydrobiol. 56:247-345.

Komárek J, Anagnostidis K, 1999. Cyanoprokaryota. 1. Teil: Chroococcales. In: H. Ettl, G. Gärtner, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. 19/1. Springer Spektrum: 548 pp.

Komárek J, Anagostidis K, 2005. Cyanoprokaryota. 2. Teil: Oscillatoriales. In: B. Bündel, L. Krienitz, G. Gӓtner and M. Schagerl (eds.), Süsswasserflora von Mitteleuropa. Springer Spektrum: 759 pp.

Komárek J, Komárková-Lec-Nerová J, Sant’anna CL, Azevedo MTP, Senna PAC, 2002. Two common Mycrocystis species (Chroococcaales, Cyanobacteria) from tropical America, including M. panniformis sp. Algologie 23:159-177.

Kotak BG, Lam AK, Prepas EE, Hrudey SE, 2000. Role of chemical and physical variables in regulating microcystin-LR concentration in phytoplankton of eutrophic lakes. Can. J. Fish. Aquat. Sci. 57:1584-1593. DOI:

Krol MS, Bronstert A, 2007. Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Northeast Brazil. Environ. Modell. Softw. 22:259-268. DOI:

Lahti K, 1997. Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water. Water Res. 31:1005-1012. DOI:

Lorenzen CJ, 1967. Determination of chlorophyll and pheo-pigments: Spectrofotometric equations. Limnol. Oceanogr.12: 343. DOI:

Lorenzi AS, Cordeiro-Araújo MK, Chia MA, Bittencourt-Oliveira MC, 2018. Cyanotoxin contamination of semiarid drinking water supply reservoirs. Environ. Earth Sci. 77:595. DOI:

Lorenzi AS, Chia MA, Piccin-Santos V, Bittencourt-Oliveira MDC, 2015. Microcystins and cylindrospermopsins molecular markers for the detection of toxic cyanobacteria: a case study of northeastern Brazilian reservoirs. Limnetica. 34:269-282.

Mantzouki E, Lürling M, Fastner J, De Senerpont Domis L, Wilk-Woźniak E, Koreivienė J, Seelen L, Teurlincx S, Verstijnen Y, Krztoń W, Walusiak E, Karosienė J, Kasperovičienė J, Savadova K, Vitonytė I, Cillero-Castro C, Budzyńska A, Goldyn R, Kozak A, Rosińska J, Szeląg-Wasielewska E, Domek P, Jakubowska-Krepska N, Kwasizur K, Messyasz B, Pełechata A, Pełechaty M, Kokocinski M, García-Murcia A, Real M, Romans E, Noguero-Ribes J, Duque DP, Fernández-Morán E, Karakaya N, Häggqvist K, Demir N, Beklioğlu M, Filiz N, Levi EE, Iskin U, Bezirci G, Tavşanoğlu ÜN, Özhan K, Gkelis S, Panou M, Fakioglu Ö, Avagianos C, Kaloudis T, Çelik K, Yilmaz M, Marcé R, Catalán N, Bravo AG, Buck M, Colom-Montero W, Mustonen K, Pierson D, Yang Y, Raposeiro PM, Gonçalves V, Antoniou MG, Tsiarta N, McCarthy V, Perello VC, Feldmann T, Laas A, Panksep K, Tuvikene L, Gagala I, Mankiewicz-Boczek J, Yağcı MA, Çınar Ş, Çapkın K, Yağcı A, Cesur M, Bilgin F, Bulut C, Uysal R, Obertegger U, Boscaini A, Flaim G, Salmaso N, Cerasino L, Richardson J, Visser PM, Verspagen JMH, Karan T, Soylu EN, Maraşlıoğlu F, Napiórkowska-Krzebietke A, Ochocka A, Pasztaleniec A, Antão-Geraldes AM, Vasconcelos V, Morais J, Vale M, Köker L, Akçaalan R, Albay M, Špoljarić Maronić D, Stević F, Žuna Pfeiffer T, Fonvielle J, Straile D, Rothhaupt K-O, Hansson L-A, Urrutia-Cordero P, Bláha L, Geriš R, Fránková M, Koçer MAT, Alp MT, Remec-Rekar S, Elersek T, Triantis T, Zervou S-K, Hiskia A, Haande S, Skjelbred B, Madrecka B, Nemova H, Drastichova I, Chomova L, Edwards C, Sevindik TO, Tunca H, Önem B, Aleksovski B, Krstić S, Vucelić IB, Nawrocka L, Salmi P, Machado-Vieira D, De Oliveira AG, Delgado-Martín J, García D, Cereijo JL, Gomà J, Trapote MC, Vegas-Vilarrúbia T, Obrador B, Grabowska M, Karpowicz M, Chmura D, Úbeda B, Gálvez JÁ, Özen A, Christoffersen KS, Warming TP, Kobos J, Mazur-Marzec H, Pérez-Martínez C, Ramos-Rodríguez E, Arvola L, Alcaraz-Párraga P, Toporowska M, Pawlik-Skowronska B, Niedźwiecki M, Pęczuła W, Leira M, Hernández A, Moreno-Ostos E, Blanco JM, Rodríguez V, Montes-Pérez JJ, Palomino RL, Rodríguez-Pérez E, Carballeira R, Camacho A, Picazo A, Rochera C, Santamans AC, Ferriol C, Romo S, Soria JM, Dunalska J, Sieńska J, Szymański D, Kruk M, Kostrzewska-Szlakowska I, Jasser I, Žutinić P, Gligora Udovič M, Plenković-Moraj A, Frąk M, Bańkowska-Sobczak A, Wasilewicz M, Özkan K, Maliaka V, Kangro K, Grossart H-P, Paerl HW, Carey CC, Ibelings BW, 2018. Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins 10: pii: E156. doi: 10.3390/toxins10040156. DOI:

Martins ESPR, De Nys E, Molejón C, Biazeto B, Silva RFV, Engle N, 2015. [Monitor de secas do nordeste, em busca de um novo paradigma para a gestão de secas].[Report in Portuguese]. Água Brasil Séries, no. 10. World Bank Group, Washington, D.C.

Merel S, Villarín MC, Chung K, Snyder S, 2013. Spatial and thematic distribution of research on cyanotoxins. Toxicon 76:118-131. DOI:

Mohamed ZA, 2017. Macrophytes – cyanobacteria allelopathic interactions and their implications for water resources management - A review. Limnologica 63:122-132. DOI:

Monchamp ME, Pick FR, Beisner BE, Maranger R, 2014. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PloS One 9:e85573. DOI:

Moura AN, Aragão-Tavares NKC, Amorim CA, 2018. Cyanobacterial blooms in freshwaters bodies in a semiarid region, northeastern Brazil. J. Limnol. 77:179-188. doi: 10.4081/jlimnol.2017.1646. DOI:

Moura AN, Dantas EW, Oliveira HSB, Bittencourt-Oliveira, MC, 2011. Vertical and temporal dynamics of cyanobacteria in the Carpina potable water reservoir in northeastern Brazil. Braz J Biol. 71: 451-459. DOI:

Mowe MA, Mitrovic SM, Lim RP, Furey A, Yeo DC, 2015. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol. 74:205-224. doi: 10.4081/jlimnol.2014.1005. DOI:

Naselli‐Flores L, Barone R, Chorus I, Kurmayer R, 2007. Toxic cyanobacterial blooms in reservoirs under a semiarid Mediterranean climate: the magnification of a problem. Environ. Toxicol. 22: 399-404. DOI:

O’neil JM, Davis TW, Burford MA, Glober CJ, 2012. The rise of harmul cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14:313-334. DOI:

Ohtani I, Moore RE, Runnegar MT, 1992. Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J. Am. Chem. Soc. 114:7941-7942. DOI:

Omidi A, Esterhuizen-Londt M, Pflugmacher S, 2018. Still challenging: the ecological function of the cyanobacterial toxin microcystin–What we know so far. Toxin Rev. 37:87-105. DOI:

Paerl H, Otten TG, 2013. Flora of harmful cyanobacteria: causes, consequences and controls. Microb Ecol. 65:995-1010. DOI:

Paerl HW, Hall NS, Calandrino ES, 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic- induced change. Sci. Total Environ. 409:1739-1745. DOI:

Paerl HW, Huisman J, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1:27-37. DOI:

Paerl HW, Otten TG, Joyner AR, 2016. Moving towards adaptive management of cyanotoxin-impaired water bodies. Microbio.. Biotechnol. 9:641-651. DOI:

Paerl HW, Paul VJ, 2012. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 46:1349-1363. DOI:

Panou M, Zervou SK, Kaloudis T, Hiskia A, Gkelis S, 2018. A Greek Cylindrospermopsis raciborskii strain: Missing link in tropic invader’s phylogeography tale. Harmful Algae 80:96-106. DOI:

Pawlik-Skowronska B, Toporowska M, 2016. How to mitigate cyanobacterial blooms and cyanotoxin production in eutrophic water reservoirs? Hydrobiologia 778:45-59. DOI:

Piccin-Santos V, Bittencourt-Oliveira MC, 2012. toxic cyanobacteria in four brazilian water supply reservoirs. J. Environ. Prot. 3:68-73. DOI:

Portella FHCO, Moura AN, Dantas EW, 2018. Variation in climate determines differences in the effects of abiotic variables on the phytoplankton community in tropical ecosystems. Mar. Freshwater Res. 69: 357. DOI:

Ragab R, Prudhomme C, 2002. SW-Soil and Water: Climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st Century. Biosyst. Eng. 81: 3-34. DOI:

Reynolds CS, Oliver R L, Walsby AE, 1987. Cyanobacterial dominance: The role of buoyancy regulation in dynamic lake environments. N. Zeal. J. Mar. Fresh. 21:379-390. DOI:

Rigosi A, Hanson P, Hamilton DP, Hipsey M, Rusak JA, Bois J, Kim B, 2015. Determining the probability of cyanobacterial blooms: the application of Bayesian networks in multiple lake systems. Ecol. Appl. 25:186-199. DOI:

Rocha Junior CAN, Costa MRA, Menezes RF, Attayde JL, Becker V, 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnol. Bras. 30:e106. DOI:

Rojo C, Segura M, Cortés F, Rodrigo MA, 2013. Alelopathic effects of microcystin-LR on the germination, growth and metabolismo of five charophyte species and a submerged angiosperm. Aquat. Toxicol. 144-145:1-10. DOI:

Ross J, 1979. [Práticas de ecologia].[Book in Spanish]. Omega, Barcelona: 181 pp.

Rzymski P, Poniedziałek B, 2014. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. Water Res. 66:320-337. DOI:

Sierosławska A, Rymuszka A, Kalinowska R, Skowroński T, Bownik A, Pawlik‐Skowrońska B, 2010. Toxicity of cyanobacterial bloom in the eutrophic dam reservoir (Southeast Poland). Environ. Toxicol. Chem. 29:556-560. DOI:

Sinang SC, Poh KB, Shamsudin S, Sinden A, 2015. Preliminary assessment of cyanobacteria diversity and toxic potential in ten freshwater lakes in Selangor, Malaysia. Bull. Environ. Contam. Toxicol. 95:542-547. DOI:

Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Midgley PM, 2013. Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5) (Cambridge Univ Press, New York). 25:1535.

Te SH, Gin KYH, 2011. The dynamics of cyanobacteria and microcystin production in a tropical reservoir by inferetial modelling. Harmful Algae. 10:319-329. DOI:

Ter Braak CJF, Prentice IC, 1988. The theory of gradient analysis. Adv. Ecol.Res. 18:271-317. DOI:

Toledo Jr AP, Talarico M, Chinez SJ, Agudo EG, 1983. [A aplicação de modelos simplificados para a avaliação de processo da eutrofização em lagos e reservatórios Tropicais], p. 1-34.[Article in Prtuguese]. Proceedings of the 12th Congresso Brasileiro de Engenharia Sanitária, Rio de Janeiro, ABES.

Utermöhl H, 1958. Zur Vervollkom munng der quantitative phytoplankton methodik. Mitt. Internat. Verein Limnol. 9:1-38. DOI:

Walls JT, Wyatt KH, Doll JC, Rubenstein EM, Rober AR, 2018. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Sci. Total Environ. 610-611:786-795. DOI:

Walter JM, Lopes FAC, Lopes-Ferreira M, Vidal LM, Leomil FM, Azevedo GS, Oliveira RMS, Medeiros AJ, Melo ASO, Rezende CED, Tanuri A, Thompson FL, 2018. Occurrence of harmful cyanobacteria in drinking water from a severely drought-impacted semi-arid region. Front. Microbiol. 9:176. DOI:

Wang X, Qin B, Gao G, Paerl HW, 2010a. Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. J. Plankton Res. 32:457-470. DOI:

Wang Q, Niu Y, Xie P, Chen J, Ma Z, Tao, M, Guo L, 2010b. Factors affecting temporal and spatial variations of microcystins in Gonghu Bay of Lake Taihu, with potential risk of microcystin contamination to human health. Sci. World J. 10:1795-1809. DOI:

Wiese M, D’agostino PM, Mihali TK, Moffitt MC, Neilan BA, 2010. Neurotoxic alkaloids: saxitoxin and its analogs. Mar. Drugs 8:2185-2211. DOI:

Yang H, Xie P, Xu J, Zheng L, Deng D, Zhou Q, Wu S, 2006. Seasonal variation of microcystin concentration in Lake Chaohu, a shallow subtropical lake in the People's Republic of China. Bull. Environ. Contam. Toxicol. 77:367-374. DOI:

Original Articles
Edited By
Andrea Lami, CNR-IRSA Verbania, Italy
Eutrophication, cylindrospermopsins, microcystins, saxitoxins, tropical reservoirs
  • Abstract views: 678

  • PDF: 330
  • HTML: 0
How to Cite
Silva RD dos S, Severiano JS, Oliveira DA de, Mendes CF, Barbosa VV, Chia MA, Barbosa JE de L. Spatio-temporal variation of cyanobacteria and cyanotoxins in public supply reservoirs of the semi-arid region of Brazil: Cyanobacteria and cyanotoxins in reservoirs of the semi-arid region. J Limnol [Internet]. 2019Oct.31 [cited 2021May16];79(1). Available from: