Phytoplankton-zooplankton coupling in a cascade of hypertrophic fishponds

Submitted: 26 May 2023
Accepted: 21 August 2023
Published: 21 September 2023
Abstract Views: 1810
PDF: 302
Supplementary: 29
HTML: 9
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In Central Europe, a significant proportion of shallow lake ecosystems are represented by artificial fishponds, where phytoplankton and zooplankton are an essential part of the food web. Owing to their high fish stocks and intensive fishery management, most fishponds are now eutrophic or hypertrophic, which has had clear impacts on plankton assemblages. To obtain a better understanding of phytoplankton-zooplankton coupling in fishponds, this study examines their ecological relationships in a cascade of three small fishponds over two subsequent years. In all, 133 phytoplankton taxa were recorded, mostly chlorophytes, diatoms and euglenophytes, and 60 zooplankton taxa. Multivariate analysis revealed dissolved oxygen content, dissolved inorganic nitrogen and biochemical oxygen demand as the main factors influencing phytoplankton biomass, while the most significant environment variables affecting zooplankton composition were dissolved oxygen, phosphate concentrations and conductivity. Co-correspondence analysis revealed a significant relationship between phytoplankton and zooplankton density, with cross-correlations from 76% to 87% within the first four axes. Such a high cross-correlation denotes a strong relationship between phytoplankton and zooplankton, even within the hypertrophic conditions determining fishpond ecosystems.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adámek Z, Linhart O, Kratochvíl M, Flajšhans M, Randák T, Policar T, Kozák P, 2012. Aquaculture in the Czech Republic in 2012: modern European prosperous sector based on thousand-year history of pond culture. Aquac Eure 37:5-14.
Anton-Pardo M, Adámek Z, 2015. The role of zooplankton as food in carp pond farming: A review. J Appl Ichthyol 31:7-14. DOI: https://doi.org/10.1111/jai.12852
APHA, 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition, American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC.
Auer B, Elzer U, Arndt H, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: Influence of resource and predation. J Plankton Res 26:697-709. DOI: https://doi.org/10.1093/plankt/fbh058
Barrow JL, Beisner BE, Giles R, Giani A, Domaizon I, Gregory-Eaves I, 2019. Macrophytes moderate the taxonomic and functional composition of phytoplankton assemblages during a nutrient loading experiment. Freshwater Biol 64:1369-1381. DOI: https://doi.org/10.1111/fwb.13311
Baxa M, Musil M, Kummel M, Hanzlík P, Tesařová B, Pechar L, 2021. Dissolved oxygen deficits in a shallow eutrophic aquatic ecosystem (fishpond) - Sediment oxygen demand and water column respiration alternately drive the oxygen regime. Sci Total Environ 766:142647. DOI: https://doi.org/10.1016/j.scitotenv.2020.142647
Butts TJ, Moody EK, Wilkinson GM, 2022. Contribution of zooplankton nutrient recycling and effects on phytoplankton size structure in a hypereutrophic reservoir. J Plankton Res 44:839-853. DOI: https://doi.org/10.1093/plankt/fbac045
Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, et al., 2001. trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163-186. DOI: https://doi.org/10.1890/0012-9615(2001)071[0163:TCNALP]2.0.CO;2
Declerck SAJ, de Senerpont Domis LN, 2023. Contribution of freshwater metazooplankton to aquatic ecosystem services: an overview. Hydrobiologia 850:2795-2810. DOI: https://doi.org/10.1007/s10750-022-05001-9
Elser JJ, Carney HJ, Goldman CR, 1990. The zooplankton-phytoplankton interface in lakes of contrasting trophic status: an experimental comparison. Hydrobiologia 200-201:69-82. DOI: https://doi.org/10.1007/BF02530330
Erdoǧan Ş, Beklioǧlu M, Litchman E, Miller ET, Levi EE, Bucak T, Tavşanoǧlu ÜN, 2021. Determinants of phytoplankton size structure in warm, shallow lakes. J Plankton Res 43:353-366. DOI: https://doi.org/10.1093/plankt/fbab035
Ger KA, Urrutia-Cordero P, Frost PC, Hansson LA, Sarnelle O, Wilson AE, Lürling M, 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54:128-144. DOI: https://doi.org/10.1016/j.hal.2015.12.005
Hessen DO, Faafeng BA, Brettum P, Andersen P, 2006. Nutrient enrichment and planktonic biomass ratios in lakes. Ecosystems 9:516-527. DOI: https://doi.org/10.1007/s10021-005-0114-6
Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T, 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403-424. DOI: https://doi.org/10.1046/j.1529-8817.1999.3520403.x
Jeppesen E, Lauridsen TL, Kairesalo T, Perrow MR, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes, pp. 91-114. In: Jeppesen E, Søndergaard M, Christoffersen K (eds.), The structuring role of submerged macrophytes in lakes. Springer, New York. DOI: https://doi.org/10.1007/978-1-4612-0695-8_5
Jeppesen E, Søndergaard M, Sortkjoær O, Mortensen E, Kristensen P, 1990. Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Søbygård, Denmark. Hydrobiologia 191:149-164. DOI: https://doi.org/10.1007/BF00026049
Jewel MAS, Affan MA, Khan S, 2003. Fish mortality due to cyanobacterial bloom in an aquaculture pond in Bangladesh. Pak J Biol Sci 6:1046-1050. DOI: https://doi.org/10.3923/pjbs.2003.1046.1050
Karpowicz M, Ejsmont-Karabin J, Kozłowska J, Feniova I, Dzialowski AR, 2020. Zooplankton community responses to oxygen stress. Water 12:1-20. DOI: https://doi.org/10.3390/w12030706
Kloskowski J, 2011. Differential effects of age-structured common carp (Cyprinus carpio) stocks on pond invertebrate communities: Implications for recreational and wildlife use of farm ponds. Aquac Int 19:1151-1164. DOI: https://doi.org/10.1007/s10499-011-9435-y
Kozak A, Gołdyn R, 2004. Zooplankton versus phyto- And bacterioplankton in the Maltański Reservoir (Poland) during an extensive biomanipulation experiment. J Plankton Res 26:37-48. DOI: https://doi.org/10.1093/plankt/fbh006
Li D, Wu N, Tang S, Su G, Li X, Zhang Y, et al., 2018 Factors associated with blooms of cyanobacteria in a large shallow lake, China. Environ Sci Eur 30:27. DOI: https://doi.org/10.1186/s12302-018-0152-2
Lorenzen CJ, 1967. Determination of chlorophyll and pheo‐pigments: spectrophotometric equations. Limnol Oceanogr 12:343-346. DOI: https://doi.org/10.4319/lo.1967.12.2.0343
Mallin MA, Johnson VL, Ensign SH, Macpherson TA, Creek C, 2006. Factors contributing to hypoxia in rivers, lakes, and streams. Limnol Oceanogr 51:690-701. DOI: https://doi.org/10.4319/lo.2006.51.1_part_2.0690
Marvan P, 1957. [K metodice kvantitativního stanovení nannoplanktonu pomocí membránových filtrů - Methodology for quantitative determination of nannoplankton using membrane filters].[Article in Czech]. Preslia 29:76-83.
McBeain KA, Halsey KH, 2019. Altering phytoplankton growth rates changes their value as food for microzooplankton grazers. Aquat Microb Ecol 82:19-29. DOI: https://doi.org/10.3354/ame01880
Mishra P, Naik S, Babu PV, Pradhan U, Begum M, Kaviarasan T, et al., 2022. Algal bloom, hypoxia, and mass fish kill events in the backwaters of Puducherry, southeast coast of India. Oceanologia 64:396-403. DOI: https://doi.org/10.1016/j.oceano.2021.11.003
Muylaert K, Pérez-Martínez C, Sánchez-Castillo P, Lauridsen TL, Vanderstukken M, Declerck SAJ, et al., 2010. Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe. Hydrobiologia 653:79-90. DOI: https://doi.org/10.1007/s10750-010-0345-1
Orság M, Meitner J, Fischer M, Svobodová E, Kopp R, Mareš J, et al., 2023. Estimating heat stress effects on the sustainability of traditional freshwater pond fishery systems under climate change. Water 15:1523. DOI: https://doi.org/10.3390/w15081523
Pan Y, Zhang Y, Sun S, 2014. Phytoplankton - zooplankton dynamics vary with nutrients: a microcosm study with the cyanobacterium Coleofasciculus chthonoplastes and cladoceran Moina micrura. J Plankton Res 36:1323-1332. DOI: https://doi.org/10.1093/plankt/fbu057
Pechar L, 2000. Impacts of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fish Manag Ecol 7:23-31. DOI: https://doi.org/10.1046/j.1365-2400.2000.00193.x
Potužák J, Hůda J, Pechar L, 2007. Changes in fish production effectivity in eutrophic fishponds - Impact of zooplankton structure. Aquac Int 15:201-210. DOI: https://doi.org/10.1007/s10499-007-9085-2
Rahman MM, Hossain MY, Jo Q, Kim SK, Ohtomi J, Meyer C,2009.) Ontogenetic shift in dietary preference and low dietary overlap in rohu (Labeo rohita) and common carp (Cyprinus carpio) in semi-intensive polyculture ponds. Ichthyol Res 56:28-36. DOI: https://doi.org/10.1007/s10228-008-0062-1
Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S, 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417-428. DOI: https://doi.org/10.1093/plankt/24.5.417
Scott JT, McCarthy MJ, Paerl HW, 2019. Nitrogen transformations differentially affect nutrient-limited primary production in lakes of varying trophic state. Limnol Oceanogr Lett 4:96-104. DOI: https://doi.org/10.1002/lol2.10109
Sipaúba-Tavares L, Donadon A, Milan R, 2011. Water quality and plankton populations in an earthen polyculture pond. Braz J Biol 71:845-855. DOI: https://doi.org/10.1590/S1519-69842011000500005
ter Braak CJF, Šmilauer P, 2018. Canoco reference manual and user’s guide: software for ordination, version 5.15. Microcomputer Power, Ithaca.
TIBCO Software Inc., 2020. Data Science Workbench, version 14. Available from: http://tibco.com
Tillmans AR, Wilson AE, Pick, FR, Sarnelle O, 2008. Meta-analysis of cyanobacterial effect on zooplankton population growth rate: species-specific responses. Fundam Appl Limnol 171:285-295. DOI: https://doi.org/10.1127/1863-9135/2008/0171-0285
Trommer G, Lorenz P, Lentz A, Fink P, Stibor H, 2019. Nitrogen enrichment leads to changing fatty acid composition of phytoplankton and negatively affects zooplankton in a natural lake community. Sci Rep 9:16805. DOI: https://doi.org/10.1038/s41598-019-53250-x
Vad CF, Horvath Z, Kiss KT, Bence T, Pentek AL, Acs E, 2013. Vertical distribution of zooplankton in a shallow peatland pond: the limiting role of dissolved oxygen. Ann Limnol - Int J Lim 49:275-285. DOI: https://doi.org/10.1051/limn/2013060
Van Donk E, Van de Bund WJ, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: Allelopathy versus other mechanisms. Aquat Bot 72:261-274. DOI: https://doi.org/10.1016/S0304-3770(01)00205-4
Wang X, Lu YI, Zhen He G, Han JY, Wang TY, 2007. Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistical analysis in a eutrophic shallow lake: A 5-year study. J Environ Sci 19:920-927. DOI: https://doi.org/10.1016/S1001-0742(07)60152-1
Williams AE, Moss B, 2003. Effects of different fish species and biomass on plankton interactions in a shallow lake. Hydrobiologia 491:331-346. DOI: https://doi.org/10.1023/A:1024456803994
Yuan LL, Pollard AI, 2018. Changes in the relationship between zooplankton and phytoplankton biomasses across a eutrophication gradient. Limnol Oceanogr 63:2493-2507. DOI: https://doi.org/10.1002/lno.10955
Zang C, Huang S, Wu M, Du S, Scholz M, Gao F, et al., 2011. Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water Air Soil Pollut 219:157-174. DOI: https://doi.org/10.1007/s11270-010-0695-3

Edited by

Diego Fontaneto, National Research Council, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy

Supporting Agencies

National Agency for Agricultural Research

How to Cite

Radojičić, Marija, Michal Šorf, Barbora Müllerová, and Radovan Kopp. 2023. “Phytoplankton-Zooplankton Coupling in a Cascade of Hypertrophic Fishponds”. Journal of Limnology 82 (1). https://doi.org/10.4081/jlimnol.2023.2145.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.