Complex effects of acidification, habitat properties and fish stock on littoral macroinvertebrate assemblages in montane standing waters

Submitted: 6 August 2021
Accepted: 6 December 2021
Published: 11 January 2022
Abstract Views: 4389
PDF: 365
Supplementary: 210
HTML: 121
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Littoral macroinvertebrates in acidified waterbodies are affected by the interaction of acidification and local environmental conditions. Understanding the interplay of these factors in the structuring of communities is essential for interpreting responses to and/or recovery from acidification. Here, we analyse the species composition and richness of littoral macroinvertebrates in a range of acidified montane standing waters in relation to water chemistry, littoral characteristics and fish stock. The main species composition gradients were related to pH and conductivity; however, considerable variation along these gradients was associated with local habitat characteristics (changing water levels and littoral structure) and concentration of ionic aluminium and dissolved organic carbon. Although fish stock effects were confounded by correlated acidity, we observed a significant decline in abundance of macroinvertebrates vulnerable to fish predation at sites with fish stock. Overall, littoral macroinvertebrates of acidic waterbodies were diverse due to the heterogeneity of local habitat properties, despite they were dominated by acid-tolerant species. Acidic humic sites with dense, heterogeneous littoral vegetation were species-rich, hosting numerous habitat specialists and rare species, while chronically acidified lakes with high aluminium concentrations and sparse littoral vegetation had species-poor assemblages, characteristic of strong acid-stress. Water level manipulation resulted in serious assemblage impoverishment, overriding the effects of more favourable water chemistry. This study shows that the littoral fauna of acidic waterbodies is structured by complex effects induced by local factors in addition to acidity, resulting in acid-stressed assemblages with relatively high variability, emphasising a need to analyse local habitat factors when evaluating the impact of acidification on macroinvertebrates.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Appelberg M, Henrikson BI, Henrikson L, Svedäng M, 1993. Biotic interactions within the littoral community of Swedish forest lakes during acidification. Ambio 22:290-297.
Ardö J, Lambert N, Henzlik V, Rock BN, 1997. Satellite-based estimations of coniferous forest cover changes: Krusne Hory, Czech Republic 1972-1989. Ambio 26:158-166.
Aroviita J, Hämäläinen H, 2008. The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia 613:45-56. DOI: https://doi.org/10.1007/s10750-008-9471-4
Bendell BE, McNicol DK, 1995. Lake acidity, fish predation, and the distribution and abundance of some littoral insects. Hydrobiologia 302:133-145. DOI: https://doi.org/10.1007/BF00027038
Blanchet FG, Legendre P, Borcard D, 2008. Forward selection of explanatory variables. Ecology 89:2623-2632. DOI: https://doi.org/10.1890/07-0986.1
Bridges KS, Jickells TD, Davies TD, Zeman Z, Hunova I, 2002. Aerosol, precipitation and cloud water chemistry observations on the Czech Krusne Hory plateau adjacent to a heavily industrialised valley. Atmos. Environ. 36:353-360. DOI: https://doi.org/10.1016/S1352-2310(01)00388-0
Brown CL, Poe TP, French JR, Schloesser DW, 1988. Relationships of phytomacrofauna to surface area in naturally occurring macrophyte stands. J. N. Am. Benthol. Soc. 7:129-139. DOI: https://doi.org/10.2307/1467918
Cerny J, 1995. Recovery of acidified catchments in the extremely polluted Krusne Hory Mountains, Czech Republic. Water, Air, and Soil Poll. 85:589-594. DOI: https://doi.org/10.1007/BF00476893
Corbet PS, 1999. Dragonflies: Behavior and Ecology of Odonata. Harley, Colchester: 829 pp.
Dangles O, Malmqvist B, Laudon H, 2004. Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104:149-155. DOI: https://doi.org/10.1111/j.0030-1299.2004.12360.x
Diehl S, 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73:1646-1661. DOI: https://doi.org/10.2307/1940017
Eliassen A, Hov O, Iversen T, Saltbones J, Simpson D, 1988. Estimates of airborne transboundary transport of sulphur and nitrogen over Europe, p. 79. In: EMEP/MSC-W Report 1/88. The Norwegian Meteorological Institute, Oslo.
Fairchild GW, Faulds AM, Matta JF, 2000. Beetle assemblages in ponds: effects of habitat and site age. Freshwater Biol. 44:523-534. DOI: https://doi.org/10.1046/j.1365-2427.2000.00601.x
Farmer AM, 1990. The effects of lake acidification on aquatic macrophytes – a review. Environ. Pollut. 65:219-240. DOI: https://doi.org/10.1016/0269-7491(90)90085-Q
Furey PC, Nordin RN, Mazumder A, 2006. Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. J. N. Am. Benthol. Soc. 25:19-31. DOI: https://doi.org/10.1899/0887-3593(2006)25[19:LBMUCD]2.0.CO;2
Gensemer RW, Playle RC, 1999. The bioavailability and toxicity of aluminum in aquatic environments. Crit. Rev. Environ. Sci. Technol. 29:315-450. DOI: https://doi.org/10.1080/10643389991259245
Gilinsky E, 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65:455-468. DOI: https://doi.org/10.2307/1941408
Goral F, Schellenberg J, 2018. goeveg: Functions for Community Data and Ordinations. R package version 0.4.2. https://CRAN.R-project.org/package=goeveg
Grahn O, Hultberg H, Landner L, 1974. Oligotrophication – a self-accelerating process in lakes subjected to excessive supply of acid substances. Ambio 3:93-94.
Grübler A, 2002. Trends in global emissions: carbon, sulphur, and nitrogen, p. 35-53. In: I. Douglas (ed.), Encyclopedia of Global Environmental Change. Volume 3. John Wiley & Sons, Chichester.
Hargeby A, Petersen Jr RC, 1988. Effects of low pH and humus on the survivorship, growth and feeding of Gammarus pulex (L.) (Amphipoda). Freshwat. Biol. 19:235-247. DOI: https://doi.org/10.1111/j.1365-2427.1988.tb00345.x
Harrell Jr. FE with contributions from Charles Dupont and many others, 2019. Hmisc: Harrell Miscellaneous. R package version 4.2-0. https://CRAN.R-project.org/package=Hmisc
Heino J, 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418:229-242. DOI: https://doi.org/10.1023/A:1003969217686
Henrikson L, Oscarson HG, 1985. Waterbugs (Corixidae, Hemiptera-Heteroptera) in acidified lakes: Habitat selection and adaptations. Ecol. Bull. 37:232-238.
Hildrew A, 2018. Freshwater acidification. Natural history, ecology and environmental policy. Excellence in ecology 27. International Ecology Institute, Oldendorf: 194 pp.
Hynes HBN, 1961. The effect of water-level fluctuations on littoral fauna. Verh. Internat. Verein. Limnol. 14:652-656. DOI: https://doi.org/10.1080/03680770.1959.11899340
Johnson RK, Goedkoop W, Fölster J, Wilander A, 2007. Relationships between macroinvertebrate assemblages of stony littoral habitats and water chemistry variables indicative of acid-stress. Water Air Soil Pollut. Focus 7:323-330. DOI: https://doi.org/10.1007/978-1-4020-5885-1_36
Johnson RK, Hallstan S, Zhao X, 2018. Disentangling the response of lake littoral invertebrate assemblages to multiple pressures. Ecol. Indic. 85:1149-1157. DOI: https://doi.org/10.1016/j.ecolind.2017.10.075
Knapp RA, Matthews KR, Sarnelle O, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecol. Monogr. 71:401-421. DOI: https://doi.org/10.1890/0012-9615(2001)071[0401:RAROAL]2.0.CO;2
Kolář T, Čermák P, Oulehle F, Trnka M, Štěpánek P, Cudlín P, Hruška J, Büntgen U, Rybníček M, 2015. Pollution control enhanced spruce growth in the “Black Triangle” near the Czech–Polish border. Sci. Total Environ. 538:703-711. DOI: https://doi.org/10.1016/j.scitotenv.2015.08.105
Kopáček J, Posch M, Hejzlar J, Oulehle F, Volková A, 2012. An elevation-based regional model for interpolating sulphur and nitrogen deposition. Atmos. Environ. 50:287-296. DOI: https://doi.org/10.1016/j.atmosenv.2011.12.017
Kopáček J, Procházková L, Stuchlík E, Blažka P, 1995. The nitrogen phosphorus relationship in mountain lakes: influence of atmospheric input, watershed, and pH. Limnol. Oceanogr. 40:930-937. DOI: https://doi.org/10.4319/lo.1995.40.5.0930
Kopáček J, Veselý J, 2005. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos. Environ. 39:2179-2188. DOI: https://doi.org/10.1016/j.atmosenv.2005.01.002
Křeček J, Hořická Z, 2001. Degradation and recovery of mountain watersheds: the Jizera Mountains, Czech Republic. Unasylva 207:43-49.
Křeček J, Palán L, Stuchlík E, 2017. Acid atmospheric deposition in a forested mountain catchment. iForest 10:680–686. DOI: https://doi.org/10.3832/ifor2319-010
Larsson J, 2019. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R package version 5.1.0. https://cran.r-project.org/package=eulerr
Layer K, Hildrew A, Monteith D, Woodward G, 2010. Long-term variation in the littoral food web of an acidified mountain lake. Glob. Chang. Biol. 16:3133-3143. DOI: https://doi.org/10.1111/j.1365-2486.2010.02195.x
Legendre P, Anderson MJ, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69:1-24. DOI: https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
Leira M, Cantonati M, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613:171-184. DOI: https://doi.org/10.1007/s10750-008-9465-2
Lento J, Dillon PJ, Somers KM, Reid RA, 2008. Changes in littoral benthic macroinvertebrate communities in relation to water chemistry in 17 Precambrian Shield lakes. Can. J. Fish. Aquat. Sci. 65:906-918. DOI: https://doi.org/10.1139/f08-033
Martínez-Sanz C, Cenzano CSS, Fernández-Aláez M, García-Criado F, 2012. Relative contribution of small mountain ponds to regional richness of littoral macroinvertebrates and the implications for conservation. Aquatic Conserv: Mar. Freshw. Ecosyst. 22:155-164. DOI: https://doi.org/10.1002/aqc.2227
McFarland B, Carse F, Sandin L, 2010. Littoral macroinvertebrates as indicators of lake acidification within the UK. Aquat. Conserv. Mar. Freshw. Ecosyst. 22:s105-116. DOI: https://doi.org/10.1002/aqc.1064
Newman RM, 1991. Herbivory and detritivory on freshwater macrophytes by macroinvertebrates: a review. J. N. Am. Benthol. Soc. 10:89-114. DOI: https://doi.org/10.2307/1467571
Nilsson AN, Elmberg J, Sjöberg K, 1994. Abundance and species richness patterns of diving beetles (Coleoptera, Dytiscidae) in Swedish lakes. J. Biogeogr. 21:197-206. DOI: https://doi.org/10.2307/2845472
Nosek JN, Vásárhelyi T, Bakonyi G, Oertel N, 2007. Spatial pattern of water bugs (Nepomorpha, Gerromorpha) at different scales in the Szigetköz (Hungary). Biologia 62:345-350. DOI: https://doi.org/10.2478/s11756-007-0057-9
Novikmec M, Veselská M, Bitušík P, Hamerlík L, Matúšová Z, Reduciendo Klementová B, Svitok M, 2015. Checklist of benthic macroinvertebrates of high altitude ponds of the Tatra Mountains (Central Europe) with new records of two species for Slovakia. Check List 11:1522. DOI: https://doi.org/10.15560/11.1.1522
Økland J, Økland KA, 1986. The effects of acid deposition on benthic animals in lakes and streams. Experientia 42:423-432. DOI: https://doi.org/10.1007/BF01946685
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H, 2019. vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan
Oulehle F, Hruška J, 2009. Rising trends of dissolved organic matter in drinking-water reservoirs as a result of recovery from acidification in the Ore Mts., Czech Republic. Environ. Pollut. 157:3433-3439. DOI: https://doi.org/10.1016/j.envpol.2009.06.020
Paradis E, Schliep K, 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526-528. DOI: https://doi.org/10.1093/bioinformatics/bty633
Peres-Neto PR, Legendre P, Dray S, Borcard D, 2006. Variance partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614-2625. DOI: https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
Peterka J, Čech M, Draštík V, Frouzová J, Jankovský M, Muška M, Prchalová M, 2009. Průzkum rybí obsádky nádrže Fláje v roce 2008. Biologické centrum AV ČR, v.v.i., Hydrobiologický ústav, České Budějovice: 14 pp.
R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rennie MD, Jackson LJ, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can. J. Fish. Aquat. Sci. 62:2088-2099. DOI: https://doi.org/10.1139/f05-123
Roberts DW, 2019. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 2.0-1. https://CRAN.R-project.org/package=labdsv
Šanda R, Švátora M, Vukič J, Hořická Z, Sychrová O, Marič S, 2015. Evaluation of the temporal development of three introduced populations of brook trout, Salvelinus fontinalis, in Jizerské mountains, Czech Republic. Arch. Biol. Sci. 67:775-784. DOI: https://doi.org/10.2298/ABS140215036S
Schartau AK, Moe SJ, Sandin L, McFarland B, Raddum GG, 2008. Macroinvertebrate indicators of lake acidification: analysis of monitoring data from UK, Norway and Sweden. Aquatic Ecol. 42:293-305. DOI: https://doi.org/10.1007/s10452-008-9186-7
Schilling EG, Loftin CS, Huryn AD, 2009. Macroinvertebrates as indicators of fish absence in naturally fishless lakes. Freshwat. Biol. 54:181-202. DOI: https://doi.org/10.1111/j.1365-2427.2008.02096.x
Soldán T, Bojková J, Vrba J, Bitušík P, Chvojka P, Papáček M, Peltanová J, Sychra J, Tátosová J, 2012. Aquatic insects of the Bohemian Forest glacial lakes: Diversity, long-term changes, and influence of acidification. Silva Gabreta 18:123-283.
Stuchlík E, Hořická Z, Prchalová M, Křeček J, Barica J, 1997. Hydrobiological investigation of three acidified reservoirs in the Jizera Mountains, the Czech Republic, during the summer stratification. Can. Tech. Rep. Fish. Aquat. Sci. 2155:56-64.
Sychra J, Adámek Z, Petřivalská K, 2010. Distribution and diversity of littoral macroinvertebrates within extensive reed beds of a lowland pond. Ann. Limnol. 46:281-289. DOI: https://doi.org/10.1051/limn/2010026
Teyrovský V, 1956. [Fotopathie larev klešťanek (Corixinae)].[Article in Czech]. Sborník Vysoké školy pedagogické v Olomouci, Přírodní vědy 2:147-177.
Tiberti R, von Hardenberg A, Bogliani B, 2014. Ecological impact of introduced fish in high altitude lakes: a case of study from the European Alps. Hydrobiologia 724:1-19. DOI: https://doi.org/10.1007/s10750-013-1696-1
Tolonen KT, Hämäläinen H, Holopainen IJ, Mikkonen K, Karjalainen J, 2003. Body size and substrate association of littoral insects in relation to vegetation structure. Hydrobiologia 499:179-190. DOI: https://doi.org/10.1023/A:1026325432000
Vašát R, Pavlů L, Borůvka L, Tejnecký V, Nikodem A, 2015. Modelling the impact of acid deposition on forest soils in North Bohemian Mountains with two dynamic models: the Very Simple Dynamic Model (VSD) and the Model of Acidification of Groundwater in Catchments (MAGIC). Soil Water Res. 10:10-18. DOI: https://doi.org/10.17221/76/2014-SWR
Vrba J, Bojková J, Chvojka P, Fott J, Kopáček J, Macek M, Nedbalová L, Papáček M, Rádková V, Sacherová V, Soldán T, Šorf M, 2016. Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. Freshwat. Biol. 61:376-395. DOI: https://doi.org/10.1111/fwb.12714
Vrba J, Kopáček J, Bittl T, Nedoma J, Štrojsová A, Nedbalová L, Kohout L, Fott J, 2006. A key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes. Biologia 61:S441-S451. DOI: https://doi.org/10.2478/s11756-007-0077-5
Vrba J, Kopáček J, Fott J, Kohout L, Nedbalová L, Pražáková M, Soldán T, Schaumburg J, 2003. Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Sci. Total Environ. 310:73-85. DOI: https://doi.org/10.1016/S0048-9697(02)00624-1
Wantzen KM, Rothhaupt KO, Mörtl M, Cantonati M, Tóth LG, Fischer P, 2008. Ecological effects of water-level fluctuations in lakes. Springer, Dordrecht: 184 pp. DOI: https://doi.org/10.1007/978-1-4020-9192-6
Weinzierl A, 1999. [Neues über Molanna nigra und einige seltenere Leptoceridae aus Bayern (Insecta: Trichoptera)].[Article in German]. Lauterbornia 36:9-12.
Wesolek BE, Genrich EK, Gunn JM, Somers KM, 2010. Use of littoral benthic invertebrates to assess factors affecting biological recovery of acid- and metal-damaged lakes. J. N. Am. Benthol. Soc. 29:572-585. DOI: https://doi.org/10.1899/09-123.1
Wickham H, 2016. ggplot2: Elegant Graphics for Data Analysis (2nd Edition). Springer-Verlag, New York: 260 pp

Edited by

Valeria Lencioni, Head Invertebrate Zoology and Hydrobiology Dept., MUSE-Museo delle Scienze, Trento, Italy

How to Cite

Petruželová, Jana, Jindřiška Bojková, Jan Sychra, Vanda Šorfová, Vendula Polášková, and Jaroslav Vrba. 2022. “Complex Effects of Acidification, Habitat Properties and Fish Stock on Littoral Macroinvertebrate Assemblages in Montane Standing Waters”. Journal of Limnology 81 (1). https://doi.org/10.4081/jlimnol.2022.2053.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo