Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina

https://doi.org/10.4081/jlimnol.2021.2027

Authors

  • M. Carolina Bernal | cbernal@ege.fcen.uba.ar Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
  • Lunhui Lu Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.
  • Carmen Sabio y García Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
  • María Laura Sánchez Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. https://orcid.org/0000-0001-5831-1811
  • M. Solange Vera Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
  • Sol Porcel Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
  • Rodrigo Sinistro Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
  • Zhe Li Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.
  • Irina Izaguirre Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. https://orcid.org/0000-0001-7360-8103

Abstract

In this study we explored how picoplankton community structure and diversity varied along three cascade oligo-mesotrophic reservoirs of the Limay River (Patagonia, Argentina): Alicura, Piedra del Águila and Ramos Mexía. We analyzed the spatial changes, covering lotic and lentic stretches along a gradient of 262 km from Andes to steppe, and we also sampled the main affluent of the Limay River (Collon Cura). In all sampling sites the main limnological variables were measured, and the picoplankton abundance (autotrophic and heterotrophic) was analyzed by flow cytometry. The bacterial biodiversity was assessed using high throughput sequencing Illumina MiSeq. We expected an increase in the trophic state along this series of cascade reservoirs, which would determine spatial differences in the structure of the picoplankton communities. We also hypothesized that the lotic and lentic conditions along the system would influence the bacterial composition. The results showed a slight increase in trophic state together with an increase in overall picoplankton abundance downstream, towards Ramos Mexía Reservoir. Picocyanobacteria were represented by phycoerythrin-rich cells all along the system, in accordance to the pattern described for oligotrophic aquatic ecosystems. Multivariate analyses based on bacterial OTU composition and environmental variables showed a spatial ordination of sites following the trend of increasing trophic state downstream. Molecular analyses of bacterial OTU diversity also showed an increase in richness and a decrease in evenness at the lotic stretches, and the opposite pattern in the reservoirs, suggesting that water retention time may play a role in structuring the community composition.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Baffico GD, Pedrozo FL, 1996. Growth factors controlling periphyton production in a temperate reservoir in Patagonia used for fish farming. Lakes Reserv. Res. Manage. 2:243-249. DOI: https://doi.org/10.1111/j.1440-1770.1996.tb00068.x

Baigún C, Marinone MC, 1995. Cold-temperate lakes of South America: Do they fit north hemisphere models? Arch. Hydrobiol. 135:23-51. DOI: https://doi.org/10.1127/archiv-hydrobiol/135/1995/23

Bastidas Navarro M, Modenutti B, Callieri C, Bertoni R, Balseiro E. 2009. Balance between primary and bacterial production in North Patagonian shallow lakes. Aquat. Ecol. 43: 867-878. DOI: https://doi.org/10.1007/s10452-008-9220-9

Baxter RM, 1977. Environmental effects of dams and impoundments. Annu. Rev. Ecol. Syst. 8:255-83. DOI: https://doi.org/10.1146/annurev.es.08.110177.001351

Bouvier T, Del Giorgio PA, Gasol JM, 2007. A comparative study of the cytometric characteristics of high and low nucleic‐acid bacterioplankton cells from different aquatic ecosystems. Environ. Microbiol. 9:2050-2066. DOI: https://doi.org/10.1111/j.1462-2920.2007.01321.x

Callieri C, 2008. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Reviews 1:1-28. DOI: https://doi.org/10.1608/FRJ-1.1.1

Callieri C, Amicucci E, Bertoni R, Vörös L, 1996. Fluorometric characterization of two picocyanobacteria strains from different underwater light quality. Int. Rev. Ges. Hydrobiol. 81:13-23. DOI: https://doi.org/10.1002/iroh.19960810103

Callieri C, Modenutti B, Queimalinos C, Bertoni R, Balseiro E, 2007. Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquat. Ecol. 41:511-523. DOI: https://doi.org/10.1007/s10452-007-9125-z

Callieri C, Cronberg G, Stockner J, 2012. Freshwater Picocyanobacteria: Single Cells, Microcolonies and Colonial Forms, p. 229-269. In: B. Whitton (ed.), Ecology of Cyanobacteria: Their Diversity in Time and Space. Springer. DOI: https://doi.org/10.1007/978-94-007-3855-3_8

CAMMESA, 2017. [Informe Anual]. [Document in Spanish]. Compañía Administradora del Mercado Mayorista Eléctrico. https://portalweb.cammesa.com/memnet1/Pages/descargas.aspx

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R, 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335-336. DOI: https://doi.org/10.1038/nmeth.f.303

Caravati E, Callieri C, Modenutti, B, Corno G, Balseiro E, Bertoni, R, Michaud L, 2010. Picocyanobacterial assemblages in ultraoligotrophic Andean lakes reveal high regional microdiversity. J. Plankton Res. 32:357-366. DOI: https://doi.org/10.1093/plankt/fbp126

Casco MA, Labollita HA, Cano MG, 2014. Phytoplankton of the reservoirs of Central and North Patagonia. Adv. Limnol. 65:293-307. DOI: https://doi.org/10.1127/1612-166X/2014/0065-0047

Chang W, Sun J, Pang Y, Zhang S, Gong L, Lu J, Feng B, Xu R, 2020. Effects of different habitats on the bacterial community composition in the water and sediments of Lake Taihu, China. Environ. Sci. Pollut. R. 27:44983-44994. DOI: https://doi.org/10.1007/s11356-020-10376-0

Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q, Sun S, 2020. Distinct assembly mechanisms underlie similar biogeographic patterns of rare and abundant bacterioplankton in cascade reservoirs of a large river. Front. Microbiol. 11:158. DOI: https://doi.org/10.3389/fmicb.2020.00158

Cotner JB, Biddanda BA, 2002. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105-121. DOI: https://doi.org/10.1007/s10021-001-0059-3

Díaz MM, 1994. [Fitoplancton de lagos Andino-Patagónicos: su relación con factores abióticos]. [Doctoral dissertation in Spanish]. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires: 182 pp. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2645_Diaz.pdf

Díaz MM, Temporetti PF, Pedrozo FL, 2001. Response of phytoplankton to enrichment from cage fish farm waste in Alicura Reservoir (Patagonia, Argentina). Lakes Reserv. Res. Manage. 6:151-158. DOI: https://doi.org/10.1046/j.1440-1770.2001.00136.x

Díaz MM, Pedrozo FL, Reynolds C, Temporetti PF, 2007. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:17-27. DOI: https://doi.org/10.1016/j.limno.2006.08.006

Di Siervi MÁ, Mariazzi AA, Donadelli JL, 1995. [Medición de la producción bacteriana en un embalse patagónico. Variaciones espacio temporales y relaciones con la producción primaria]. [Article in Spanish]. Biología Acuática 18:33-42.

Dölling OR (Ed.), 2013. Inventario de presas y centrales hidroeléctricas de la República Argentina. Subsecretaría de Recursos Hídricos. Secretaría de Obras Públicas, Ministerio de Planificación Federal, Inversión pública y Servicios. Argentina.

Dudgeon D, 2020. Freshwater Biodiversity: Status, threats and conservation. Cambridge University Press, Cambridge: 516 pp. DOI: https://doi.org/10.1017/9781139032759

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R, 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194-2200. DOI: https://doi.org/10.1093/bioinformatics/btr381

Fernández Zenoff V, Siñeriz F, Farias ME, 2006. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl. Environ. Microb. 72:7857-7863. DOI: https://doi.org/10.1128/AEM.01333-06

Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagström A, 1999. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microb. 65:4475-4483. DOI: https://doi.org/10.1128/AEM.65.10.4475-4483.1999

Hahn MW, Lünsdorf H, Wu Q, Schauer M, Höfle MG, Boenigk J, Stadler P, 2003. Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl. Environ. Microb. 69:1442-1451. DOI: https://doi.org/10.1128/AEM.69.3.1442-1451.2003

Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF, 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5:1571-1579. DOI: https://doi.org/10.1038/ismej.2011.41

Hollander M, Wolfe DA, 1973. Nonparametric Statistical Methods. Wiley, New York: 503 pp.

Horňák K, Kasalický V, Šimek K, Grossart H-P, 2017. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ. Microbiol. 19:4519-4535. DOI: https://doi.org/10.1111/1462-2920.13900

http://www.energia.gob.ar/contenidos/archivos/Reorganizacion/contenidos_didacticos/publicaciones/LibroPresas_4.pdf

Izaguirre I, Unrein F, Modenutti B, Allende L, 2014. Photosynthetic picoplankton in Argentina lakes. Adv. Limnol. 6:343-57. DOI: https://doi.org/10.1127/1612-166X/2014/0065-0050

Kirchman DL, 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39:91-100. DOI: https://doi.org/10.1016/S0168-6496(01)00206-9

Kirk JTO, 1994. Light & photosynthesis in aquatic ecosystems. 2nd Edition. Cambridge University Press, Cambridge: 509 pp. DOI: https://doi.org/10.1017/CBO9780511623370

Labollita HA, 2011. [Monitoreo de floraciones algales en las cuencas de los ríos Limay, Neuquén y Negro]. [Document in Spanish]. IX Congreso de Ficología de Latinoamérica y el Caribe-VII Reunión Iberoamericana de Ficología-IX Simposio Argentino de Ficología: 50 pp.

Labollita HA, Pedrozo FL, 1997. Factors controlling trophic state of reservoirs at the basins of Limay, Neuquen and Negro Rivers (Argentina), p. 21-23. In: Proceedings of the 7th International Conference on Lakes Conservation and Management: ILEC-Lacar’97. International Lakes Environment Committee Foundation.

Lampert W, Sommer U, 2007. Limnoecology: the ecology of lakes and streams. 2nd Edition. Oxford University Press, Oxford: 324 pp.

Land de Castello H, 1981. [Algunos aspectos limnológicos abióticos de las cuencas de los ríos Limay y Neuquén, con especial referencia al embalse Ramos Mexia]. [Article in Spanish]. Ecosur 8:1-27.

Lemarchand C, Jardillier L, Carrias JF, Richardot M, Debroas D, Sime-Ngando T, Amblard C, 2006. Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems. FEMS Microbiol. Ecol. 57:442–451. DOI: https://doi.org/10.1111/j.1574-6941.2006.00131.x

Li WKW, 2009. Plankton populations and communities, p 29-64. In: J.D. Witman and K. Roy (eds.), Marine macroecology. University of Chicago Press, Chicago, Illinois. DOI: https://doi.org/10.7208/chicago/9780226904146.003.0002

Lipko IA, 2020. Phylogeny of the freshwater lineages within the phyla Actinobacteria (Overview). Limnol. Freshw. Biol. 358-363. DOI: https://doi.org/10.31951/2658-3518-2020-A-1-358

Mariazzi A, Conzonno V, Echenique R, Labollita H, 1991. Physical and chemical characters, phytoplankton and primary production of Ezequiel Ramos Mexía Reservoir (Argentina). Hydrobiologia 209:107-116. DOI: https://doi.org/10.1007/BF00006922

Marker AFH, Nusch A, Rai H, Riemann B, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Arch. Hydrobiol. 14:91–106.

McCartney MP, Sullivan C, Acreman MC, McAllister DE, 2000. Ecosystem impacts of large dams. Background paper 2.

McCully P, 2001. Silenced Rivers: The ecology and politics of large dams. Enlarged and updated edition. Zed Books, London & New York: 360 pp.

Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S, 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. R. 75:14-49. DOI: https://doi.org/10.1128/MMBR.00028-10

Newton RJ, McMahon KD, 2011. Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Environ. Microbiol. 13:887-899. DOI: https://doi.org/10.1111/j.1462-2920.2010.02387.x

Niño-García JP, Ruiz-González C, Del Giorgio PA, 2016. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J. 10:1755-1766. DOI: https://doi.org/10.1038/ismej.2015.226

Nold SC, Zwart G, 1998. Patterns and governing forces in aquatic microbial communities. Aquat. Ecol. 32:17-35. DOI: https://doi.org/10.1023/A:1009991918036

O’Farrell I, Motta C, Forastier M, Polla W, Otaño S, Meichtry N, Devercelli M, Lombardo R, 2019. Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina. Harmful Algae 83:1-13. DOI: https://doi.org/10.1016/j.hal.2019.01.004

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H, 2019. Vegan: Community Ecology Package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan

Olson RJ, Zettler ER, DuRand MD, 1993. Phytoplankton analysis using flow cytometry, p. 175-186. In: P.F, Kemp, B.F. Sherr, E.B. Sherr and J.J. Cole (eds.), Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton. DOI: https://doi.org/10.1201/9780203752746-23

Pick FR, 1991. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol. Oceanogr. 36:1457-1462. DOI: https://doi.org/10.4319/lo.1991.36.7.1457

Pick FR, Agbeti DM, 1991. The seasonal dynamic and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int. Rev. Ges. Hydrobio. 76:565-580. DOI: https://doi.org/10.1002/iroh.19910760409

Porcel S, Saad JF, Sabio y García CA, Izaguirre I, 2019. Microbial planktonic communities in lakes from a Patagonian basaltic plateau: influence of the water level decrease. Aquat. Sci. 81:51. DOI: https://doi.org/10.1007/s00027-019-0647-y

Porter KG, Pearl H, Hodson R, Pace M, Priscu J, Riemann B, Scavia D, Stockner J, 1988. Microbial interactions in lake food webs, p. 209-227. In: S.R. Carpenter (ed.), Complex Interactions in Lakes Communities. Springer, New York. DOI: https://doi.org/10.1007/978-1-4612-3838-6_13

Press WH, Flannery BP, Teukolsky SA, Vetterling WT, 1988. Numerical Recipes in C – The Art of Scientific Computing. Cambridge University Press, Cambridge: 735 pp.

Props R, Denef VJ, 2020. Temperature and nutrient levels correspond with lineage-specific microdiversification in the ubiquitous and abundant freshwater genus Limnohabitans. Appl. Environ. Microb. 86:e00140-20.b. DOI: https://doi.org/10.1128/AEM.00140-20

Qin Y, Tang Q, Lu L, Wang Y, Izaguirre I, Li Z, 2021. Changes in planktonic and sediment bacterial communities under the highly regulated dam in the mid-part of the Three Gorges Reservoir. Appl. Microbiol. Biot. 105:839-852. DOI: https://doi.org/10.1007/s00253-020-11047-3

Quirós R, Cuch S, Baigún C, 1985. [Relación entre abundancia de peces y ciertas propiedades físicas, químicas y biológicas, en lagos y embalses patagónicos (Argentina)]. [Article in Spanish]. Taller Internacional sobre ecología y manejo de peces en lagos y embalses, Santiago de Chile: 5-10.

R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

RStudio Team, 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, Massachusetts. http://www.rstudio.com/

Rangel L, Silva LHS, Rosa P, Roland F, Huszar VLM, 2012. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693:13-28. DOI: https://doi.org/10.1007/s10750-012-1083-3

Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, Griffiths RI, 2015. Catchment-scale biogeography of riverine bacterioplankton. ISME J. 9:516-526. DOI: https://doi.org/10.1038/ismej.2014.166

Reis PC, Ruiz-González C, Crevecoeur S, Soued C, Prairie YT, 2020. Rapid shifts in methanotrophic bacterial communities mitigate methane emissions from a tropical hydropower reservoir and its downstream river. Sci. Total Environ. 748:141374. DOI: https://doi.org/10.1016/j.scitotenv.2020.141374

Salcher MM, 2014. Same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J. Limnol. 73:74-87. DOI: https://doi.org/10.4081/jlimnol.2014.813

Sarmento H, Gasol JM, 2012. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ. Microbiol. 14:2348-2360. DOI: https://doi.org/10.1111/j.1462-2920.2012.02787.x

Schiaffino MR, Unrein F, Gasol JM, Massana R, Balague V, Izaguirre I, 2011. Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors. Freshwater Biol. 56:1973-1991. DOI: https://doi.org/10.1111/j.1365-2427.2011.02628.x

Schiaffino MR, Gasol JM, Izaguirre I, Unrein F, 2013. Picoplankton abundance and cytometric group diversity along a trophic and latitudinal lake gradient. Aquat. Microb. Ecol. 68:231-250. DOI: https://doi.org/10.3354/ame01612

Schindler DW, 2006. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 51:356-363. DOI: https://doi.org/10.4319/lo.2006.51.1_part_2.0356

Secretaría de Energía, 2003. [Recursos hídricos: Centrales hidráulicas, embalses, lagos y lagunas]. [Document in Spanish]. Secretaría de Energía, República Argentina: 136 pp.

Shabarova T, Kasalický V, Šimek K, Nedoma J, Znachor P, Posch T, Pernthaler J, Salcher MM, 2017. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ. Microbiol. 19:1296-1309. DOI: https://doi.org/10.1111/1462-2920.13663

Sharp JH, Peltzer ET, Alperin MJ, Cauwet G, Farrington JW, Fry B, Karl DM, Martin JH, Spitzy A, Tugrul S, Carlson CA, 1993. Procedures subgroup report. Mar. Chem. 41:37-49. DOI: https://doi.org/10.1016/0304-4203(93)90104-V

Šimek K, Kasalický V, Jezbera J, Jezberov. J, Hejzlar J, Hahn MW, 2010. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl. Environ. Microb. 76:631-639. DOI: https://doi.org/10.1128/AEM.02203-09

Šimek K, Kasalický V, Zapomelová E, Horňák K, 2011. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl. Environ. Microb. 77:7307-7315. DOI: https://doi.org/10.1128/AEM.05107-11

Stockner JG, Antia NJ, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43:2472 -2503. DOI: https://doi.org/10.1139/f86-307

Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ, 2007. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10:290-298. DOI: https://doi.org/10.1111/j.1461-0248.2007.01026.x

Temporetti PF, Alonso MF, Baffico G, Diaz MM, Lopez W, Pedrozo FL, Vigliano PH, 2001. Trophic state, fish community and intensive production of salmonids in Alicura Reservoir (Patagonia, Argentina). Lakes Reserv. Res. Manage. 6: 259-267. DOI: https://doi.org/10.1046/j.1440-1770.2001.00142.x

Tessler M, Brugler MR, DeSalle R, Hersch R, Velho LFM, Segovia BT, Lansac-Toha FA, Lemke MJ, 2017. A Global eDNA Comparison of Freshwater Bacterioplankton Assemblages Focusing on Large-River Floodplain Lakes of Brazil. Microb. Ecol. 73:1-14. DOI: https://doi.org/10.1007/s00248-016-0834-5

Valderrama JC, 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar. Chem. 10:109-122. DOI: https://doi.org/10.1016/0304-4203(81)90027-X

Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D, 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. R. 71:495-548. DOI: https://doi.org/10.1128/MMBR.00005-07

Vörös L, Callieri C, Katalin V, Bertoni R, 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369/370:117-125. DOI: https://doi.org/10.1023/A:1017026700003

Vörös L, Mozés A, Somogyi B, 2009. A five-year study of autotrophic winter picoplankton in Lake Alaton, Hungary. Aquat. Ecol. 43:727-734. DOI: https://doi.org/10.1007/s10452-009-9272-5

Wang B, Liu CQ, Wang F, Yu Y, Zhang L, 2008. The distributions of autumn picoplankton in relation to environmental factors in the reservoirs along the Wujiang River in Guizhou Province, SW China. Hydrobiologia 598:35-45. DOI: https://doi.org/10.1007/s10750-007-9138-6

Wang X, Wang C, Wang P, Chen J, Miao L, Feng T, Yuan Q, Liu S, 2018. How bacterioplankton community can go with cascade damming in the highly regulated Lancang–Mekong River Basin. Mol. Ecol. 27:4444-4458. DOI: https://doi.org/10.1111/mec.14870

Ward JV, Stanford JA, 1983. The serial discontinuity concept of lotic ecosystems, p. 29-42. In: T.D. Fontaine III and S.M. Bartell (eds.), Dynamics of lotic ecosystems. Ann Arbor Science Publishers, Ann Arbor, Michigan.

Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J, 2005. Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl. Environ. Microb. 71:5551-5559. DOI: https://doi.org/10.1128/AEM.71.9.5551-5559.2005

Yang M, Shi J, Wang B, Xiao J, Li W, Liu CQ, 2020. Control of hydraulic load on bacterioplankton diversity in cascade hydropower reservoirs, Southwest China. Microb. Ecol. 80:537-545. DOI: https://doi.org/10.1007/s00248-020-01523-8

Zunino L, Díaz M, 2000. Autotrophic picoplankton along a trophic gradient in Andean - Patagonian lakes. Int. Ver. The. 27:1895-1899. DOI: https://doi.org/10.1080/03680770.1998.11901571

Published
2021-09-03
Info
Issue
Section
80 Years of the Journal of Limnology
Supporting Agencies
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), National Natural Science Foundation of China (NSFC)
Keywords:
Cascade reservoirs, Patagonia , picoplankton , flow cytometry , bacterial biodiversity
Statistics
  • Abstract views: 72

  • PDF_early view: 23
  • Supplementary 1: 6
  • Supplementary 2: 6
How to Cite
1.
Bernal MC, Lu L, Sabio y García C, Sánchez ML, Vera MS, Porcel S, Sinistro R, Li Z, Izaguirre I. Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina. J Limnol [Internet]. 2021 Sep. 3 [cited 2021 Sep. 24];. Available from: https://jlimnol.it/index.php/jlimnol/article/view/2027