Using remote sensing and numerical modelling to quantify a turbidity discharge event in Lake Garda

Submitted: 3 August 2020
Accepted: 23 September 2020
Published: 1 October 2020
Abstract Views: 2332
PDF: 735
HTML: 44
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

We investigate the effect of the Adige-Garda spillway opening on the 03/03/2020 on Lake Garda using numerical modelling and maps of Suspended Particulate Matter (SPM) concentration. SPM maps are obtained from Sentinel-2 images processed using the BOMBER bio-optical model. Three satellite images are examined: 28/02/2020, 04/03/2020 and 07/03/2020. Maps indicate a significant increase in SPM concentrations, especially in the northern part of the lake close to the hydraulic tunnel outlet. Results are consistent with the modelled flow field. Remote sensing effectively captures the event’s spatial and temporal variation, while numerical modelling explains and corroborates the observed patterns.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Amadori M, Piccolroaz S, Giovannini L, Zardi D, Toffolon M, 2018. Wind variability and Earth’s rotation as drivers of transport in a deep, elongated subalpine lake: the case of Lake Garda. J. Limnol. 77:1814. DOI: https://doi.org/10.4081/jlimnol.2018.1814
Amadori M, Morini G, Piccolroaz S, Toffolon M, 2020. Involving citizens in hydrodynamic research: A combined local knowledge - numerical experiment on Lake Garda, Italy. Sci. Total Environ. 722:137720. DOI: https://doi.org/10.1016/j.scitotenv.2020.137720
Bresciani M, Stroppiana D, Odermatt D, Morabito G, Giardino C, 2011. Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes. Sci. Total Environ. 409:3083-3091. DOI: https://doi.org/10.1016/j.scitotenv.2011.05.001
De Cesare G, Boillat JL, Schleiss AJ, 2006. Circulation in stratified lakes due to flood-induced turbidity currents. J. Environ. Eng. 132:1508-1517. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2006)132:11(1508)
Giardino C, Candiani G, Bresciani M, Lee Z, Gagliano S, Pepe M, 2012. BOMBER: A tool for estimating water quality and bottom properties from remote sensing images. Comput. Geosci. 45:313-318. DOI: https://doi.org/10.1016/j.cageo.2011.11.022
Giardino C, Bresciani M, Cazzaniga I, Schenk K, Rieger P, Braga F, Matta E, Brando VE, 2014. Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda. Sensors 14:24116-24131. DOI: https://doi.org/10.3390/s141224116
Jacobsen L, Berg S, Baktoft H, Nilsson PA, Skov C, 2014. The effect of turbidity and prey fish density on consumption rates of piscivorous Eurasian perch Perca fluviatilis. J. Limnol. 73:837. DOI: https://doi.org/10.4081/jlimnol.2014.837
Kimmel BL, Lind OT, Paulson LJ, 1990. Reservoir primary production, p133-194. In: Thorton KW, Kimmel BL, Payne FE (eds.), Reservoir limnology: Ecological perspectives. J. Wiley & Sons, Hoboken.
Lesser GR, Roelvink JA, Keste TMV, Stelling GS, 2004. Development and validation of a three-dimensional morphological model. Coast. Eng. 51:883-915. DOI: https://doi.org/10.1016/j.coastaleng.2004.07.014
Premazzi G, Dalmiglio A, Cardoso AC, Chiaudani G, 2003. Lake management in Italy: the implications of the Water Framework Directive. Lakes Reserv. Res. Manag. 8:41-59. DOI: https://doi.org/10.1046/j.1440-1770.2003.00210.x
Salmaso N, Mosello R, Garibaldi L, Decet F, Brizzio MC, Cordella P, 2003. Vertical mixing as a determinant of trophic status in deep lakes: a case study from two lakes south of the Alps (Lake Garda and Lake Iseo). J. Limnol. 62(s1):33. DOI: https://doi.org/10.4081/jlimnol.2003.s1.33
Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JGA, 2008. Description of the advanced research WRF version 3. NCAR Technical Note TN-475+STR. 125.
Soulignac F, Danis PA, Bouffard D, Chanudet V, Dambrine E, Guénand Y, Guillermin B, Harmel T, Ibelings B, Kiefer I, Trevisan D, Uittenbogaard R, Anneville O, 2018. Using 3D modelling to understand heterogeneities of surface chlorophyll-a concentration in Lake Geneva. J. Great Lakes Res. 44:756-764. DOI: https://doi.org/10.1016/j.jglr.2018.05.008
Syvitski J, Morehead M, Bahr D, Mulder T, 2000. Estimating fluvial sediment transport: the rating parameters. Water Resour. Res. 36:2747-2760. DOI: https://doi.org/10.1029/2000WR900133
Vermote EFTD, Tanré D, Deuzé JL, Herman M, Morcrette JJ, Kotchenova SY, 2006. Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Vers. 3:1-55.

Edited by

Diego Fontaneto, CNR IRSA, Verbania, Italy
Marina Amadori, Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan

Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento

How to Cite

Ghirardi, Nicola, Marina Amadori, Gary Free, Lorenzo Giovannini, Marco Toffolon, Claudia Giardino, and Mariano Bresciani. 2020. “Using Remote Sensing and Numerical Modelling to Quantify a Turbidity Discharge Event in Lake Garda”. Journal of Limnology 80 (1). https://doi.org/10.4081/jlimnol.2020.1981.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo