Model simulations of the ecological dynamics induced by climate and nutrient load changes for deep subalpine Lake Maggiore (Italy/Switzerland)

Model simulations of the future ecological dynamics of Lake Maggiore

Submitted: 4 February 2020
Accepted: 3 June 2020
Published: 12 June 2020
Abstract Views: 1878
PDF: 476
Supplementary: 110
HTML: 17
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Climate warming affects lake ecosystems both through its direct effect on the phenology of species and through the alteration of the physical and chemical environments, which in turn affect community composition. In deep lakes, stratification enhancement and mixing reduction have already been observed, leading to hypolimnetic anoxia and to the rise of cyanophytes. The increase in stability depends on the rise of air temperature due to global emissions of greenhouse gases (GHG). Primary production could then either increase with rising epilimnetic temperature and buoyancy or decrease as fewer nutrients are upwelled from deep layers. The prevailing outcome, as well as the quantitative and temporal dynamics of all climate-induced modifications, depend on the specific lake characteristics. Individual analyses are then needed, one-dimensional coupled hydrodynamic-ecological numerical models being suitable tools for such predictions. Here, we simulated with GLM-AED2 (General Lake Model – Aquatic EcoDynamics) the 2020-2085 dynamics of the oligomictic and oligotrophic deep subalpine Lake Maggiore (Italy/Switzerland), according to the Swiss Climate Change Scenarios CH2011. Multiple realisations were performed for each scenario with random meteorological series obtained from the Vector-Autoregressive Weather Generator (VG), highlighting the uncertainties related to meteorology. Increase and decrease of nutrient loads were also tested. Results show that anoxia would occur in the hypolimnion regardless of nutrient input reduction, unless global GHG emissions were immediately reduced. Total phytoplankton biomass would be weakly affected by climate change, strongly depending on nutrient input, yet water warming would cause cyanophytes to compete with diatoms. Therefore, the fate of Lake Maggiore would be tied to both global and local environmental policies.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M, 2009. Lakes as sentinels of climate change. Limnol. Oceanogr. 54:2283-2297. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Ambrosetti W, Barbanti L, 1999. Deep water warming in lakes: an indicator of climatic change. J. Limnol. 58:1-9. DOI: https://doi.org/10.4081/jlimnol.1999.1
Anderson NJ, 2000. Miniview: diatoms, temperature and climatic change. Eur. J. Phycol. 35:307-314. DOI: https://doi.org/10.1080/09670260010001735911
Barbieri A, Mosello R, 1992. Chemistry and trophic evolution of Lake Lugano in relation to nutrient budget. Aquat. Sci. 54:219-237. DOI: https://doi.org/10.1007/BF00878138
Bruce LC, Hamilton D, Imberger J, Gal G, Gophen M, Zohary T, Hambright KD, 2006. A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecol. Model. 193:412-436. DOI: https://doi.org/10.1016/j.ecolmodel.2005.09.008
Bucak T, Trolle D, Tavşanoğlu ÜN, Çakıroğlu Aİ, Özen A, Jeppesen E, Beklioğlu M, 2018. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Sci. Total Environ. 621:802-816. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.258
Burger DF, Hamilton DP, Pilditch CA, 2008. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol. Model. 211:411-423. DOI: https://doi.org/10.1016/j.ecolmodel.2007.09.028
Callieri C, Bertoni R, Contesini M, Bertoni F, 2014. Lake level fluctuations boost toxic cyanobacterial “oligotrophic blooms”. PLoS ONE 9:e109526. DOI: https://doi.org/10.1371/journal.pone.0109526
Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8:559-568. DOI: https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
Carpenter SR, Stanley EH, Vander Zanden MJ, 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Env. Resour. 36:75-99. DOI: https://doi.org/10.1146/annurev-environ-021810-094524
CH2011, 2011. Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zurich, Switzerland: 88 pp.
CH2018, 2018. CH2018 - Climate scenarios for Switzerland: technical report. National Centre for Climate Services, Zurich, Switzerland: 271 pp.
Cui Y, Zhu G, Li H, Luo L, Cheng X, Jin Y, Trolle D, 2016. Modeling the response of phytoplankton to reduced external nutrient load in a subtropical Chinese reservoir using DYRESM-CAEDYM. Lake Reserv. Manage. 32:146-157. DOI: https://doi.org/10.1080/10402381.2015.1136365
Elliott JA, Thackeray SJ, Huntingford C, Jones RG, 2005. Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshwater Biol. 50:1404-1411. DOI: https://doi.org/10.1111/j.1365-2427.2005.01409.x
Falconer I, Bartram J, Chorus I, Kuiper-Goodman T, Utkilen H, Burch M, Codd GA, 1999. Safe levels and safe practices, p. 161-182. In: I. Chorus and J. Bartram (eds.), Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon. DOI: https://doi.org/10.1201/9781482295061
Fenocchi A, Rogora M, Morabito G, Marchetto A, Sibilla S, Dresti C, 2019. Applicability of a one-dimensional coupled hydrodynamic-ecological numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland). Ecol. Model. 392:38-51. DOI: https://doi.org/10.1016/j.ecolmodel.2018.11.005
Fenocchi A, Rogora M, Sibilla S, Ciampittiello M, Dresti C, 2018. Forecasting the evolution in the mixing regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland). Clim. Dynam. 51:3521-3536. DOI: https://doi.org/10.1007/s00382-018-4094-6
Fenocchi A, Rogora M, Sibilla S, Dresti C, 2017. Relevance of inflows on the thermodynamic structure and on the modeling of a deep subalpine lake (Lake Maggiore, Northern Italy/Southern Switzerland). Limnologica 63:42-56. DOI: https://doi.org/10.1016/j.limno.2017.01.006
Fenocchi A, Sibilla S, 2016. Hydrodynamic modelling and characterisation of a shallow fluvial lake: a study on the Superior Lake of Mantua. J. Limnol. 75:455-471. DOI: https://doi.org/10.4081/jlimnol.2016.1378
Fischer AM, Liniger MA, Appenzeller C, 2015. Climate scenarios of seasonal means: extensions in time and space. CH2011 Extension Series No. 2, Zurich, Switzerland: 18 pp.
Gal G, Hipsey MR, Parparov A, Wagner U, Makler V, Zohary T, 2009. Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study. Ecol. Model. 220:1697-1718. DOI: https://doi.org/10.1016/j.ecolmodel.2009.04.010
Gal G, Makler-Pick V, Shachar N, 2014. Dealing with uncertainty in ecosystem model scenarios: application of the single-model ensemble approach. Environ. Modell. Softw. 61:360-370. DOI: https://doi.org/10.1016/j.envsoft.2014.05.015
Garibaldi L, Mezzanotte V, Brizzio MC, Rogora M, Mosello R, 1999. The trophic evolution of Lake Iseo as related to its holomixis. J. Limnol. 58:10-19. DOI: https://doi.org/10.4081/jlimnol.1999.10
Hamilton DP, Schladow SG, 1997. Prediction of water quality in lakes and reservoirs. Part I — model description. Ecol. Model. 96:91-110. DOI: https://doi.org/10.1016/S0304-3800(96)00062-2
Hipsey MR, Bruce LC, Hamilton DP, 2013. Aquatic EcoDynamics (AED) model library: science manual. AED Report. The University of Western Australia, Perth, Australia: 34 pp.
Hipsey MR, Bruce LC, Hamilton DP, 2014. GLM - General Lake Model: model overview and user information. AED Report #26. The University of Western Australia, Perth, Australia: 42 pp.
Holzner CP, Aeschbach-Hertig W, Simona M, Veronesi M, Imboden DM, Kipfer R, 2009. Exceptional mixing events in meromictic Lake Lugano (Switzerland/Italy), studied using environmental tracers. Limnol. Oceanogr. 54:1113-1124. DOI: https://doi.org/10.4319/lo.2009.54.4.1113
Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P, 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51:815-819. DOI: https://doi.org/10.4319/lo.2006.51.2.0815
Jeppesen E, Søndergaard M, Jensen JP, et al., 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biol. 50:1747-1771. DOI: https://doi.org/10.1111/j.1365-2427.2005.01415.x
Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM, 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14:495-512. DOI: https://doi.org/10.1111/j.1365-2486.2007.01510.x
Kara EL, Hanson P, Hamilton D, et al., 2012. Time-scale dependence in numerical simulations: assessment of physical, chemical, and biological predictions in a stratified lake at temporal scales of hours to months. Environ. Modell. Softw. 35:104-121. DOI: https://doi.org/10.1016/j.envsoft.2012.02.014
Livingstone DM, 2003. Impact of secular climate change on the thermal structure of a large temperate Central European lake. Climatic Change 57:205-225. DOI: https://doi.org/10.1023/A:1022119503144
Manca M, Ruggiu D, 1998. Consequences of pelagic food‐web changes during a long‐term lake oligotrophication process. Limnol. Oceanogr. 43:1368-1373. DOI: https://doi.org/10.4319/lo.1998.43.6.1368
Marcé R, Moreno-Ostos E, García-Barcina JM, Armengol J, 2010. Tailoring dam structures to water quality predictions in new reservoir projects: assisting decision-making using numerical modeling. J. Environ. Manage. 91:1255-1267. DOI: https://doi.org/10.1016/j.jenvman.2010.01.014
Matzinger A, Schmid M, Veljanoska-Sarafiloska E, Patceva S, Guseska D, Wagner B, Müller B, Sturm M, Wüest A, 2007. Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnol. Oceanogr. 52:338-353. DOI: https://doi.org/10.4319/lo.2007.52.1.0338
Mieleitner J, Reichert P, 2006. Analysis of the transferability of a biogeochemical lake model to lakes of different trophic state. Ecol. Model. 194:49-61. DOI: https://doi.org/10.1016/j.ecolmodel.2005.10.039
Morabito G, Oggioni A, Austoni M, 2012. Resource ratio and human impact: how diatom assemblages in Lake Maggiore responded to oligotrophication and climatic variability. Hydrobiologia 698:47-60. DOI: https://doi.org/10.1007/s10750-012-1094-0
Morabito G, Rogora M, Austoni M, Ciampittiello M, 2018. Could the extreme meteorological events in Lake Maggiore watershed determine a climate-driven eutrophication process? Hydrobiologia 824:163-175. DOI: https://doi.org/10.1007/s10750-018-3549-4
Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu Z, De Meester L, Paerl H, Scheffer M, 2011. Allied attack: climate change and eutrophication. Inland Waters 1:101-105. DOI: https://doi.org/10.5268/IW-1.2.359
Özkundakci D, Hamilton DP, Trolle D, 2011. Modelling the response of a highly eutrophic lake to reductions in external and internal nutrient loading. New Zeal. J. Mar. Fresh. 45:165-185. DOI: https://doi.org/10.1080/00288330.2010.548072
Paerl HW, 2006. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecol. Eng. 26:40-54. DOI: https://doi.org/10.1016/j.ecoleng.2005.09.006
Peeters F, Straile D, Lorke A, Livingstone DM, 2007. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob. Change Biol. 13:1898-1909. DOI: https://doi.org/10.1111/j.1365-2486.2007.01412.x
Pinardi M, Fenocchi A, Giardino C, Sibilla S, Bartoli M, Bresciani M, 2015. Assessing potential algal blooms in a shallow fluvial lake by combining hydrodynamic modelling and remote-sensed images. Water 7:1921-1942. DOI: https://doi.org/10.3390/w7051921
Posch T, Köster O, Salcher MM, Pernthaler J, 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2:809-813. DOI: https://doi.org/10.1038/nclimate1581
Read JS, Winslow LA, Hansen GJA, Van Den Hoek J, Hanson PC, Bruce LC, Markfort CD, 2014. Simulating 2368 temperate lakes reveals weak coherence in stratification phenology. Ecol. Model. 291:142-150. DOI: https://doi.org/10.1016/j.ecolmodel.2014.07.029
Rempfer J, Livingstone DM, Blodau C, Forster R, Niederhauser P, Kipfer R, 2010. The effect of the exceptionally mild European winter of 2006-2007 on temperature and oxygen profiles in lakes in Switzerland: a foretaste of the future? Limnol. Oceanogr. 55:2170-2180. DOI: https://doi.org/10.4319/lo.2010.55.5.2170
Reynolds CS, 2006. The Ecology of Phytoplankton. Cambridge University Press, New York, USA: 552 pp.
Rogora M, Buzzi F, Dresti C, Leoni B, Lepori F, Mosello R, Patelli M, Salmaso N, 2018. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia 824:33-50. DOI: https://doi.org/10.1007/s10750-018-3623-y
Sahoo GB, Schladow SG, Reuter JE, Coats R, Dettinger M, Riverson J, Wolfe B, Costa-Cabral M, 2013. The response of Lake Tahoe to climate change. Climatic Change 116:71-95. DOI: https://doi.org/10.1007/s10584-012-0600-8
Salmaso N, Buzzi F, Cerasino L, Garibaldi L, Leoni B, Morabito G, Rogora M, Simona M, 2014. Influence of atmospheric modes of variability on the limnological characteristics of large lakes south of the Alps: a new emerging paradigm. Hydrobiologia 731:31-48. DOI: https://doi.org/10.1007/s10750-013-1659-6
Salmaso N, Morabito G, Garibaldi L, Mosello R, 2007. Trophic development of the deep lakes south of the Alps: a comparative analysis. Fund. Appl. Limnol. 170:177-196. DOI: https://doi.org/10.1127/1863-9135/2007/0170-0177
Scheffer M, Straile D, van Nes EH, Hosper H, 2001. Climatic warming causes regime shifts in lake food webs. Limnol. Oceanogr. 46:1780-1783. DOI: https://doi.org/10.4319/lo.2001.46.7.1780
Schlabing D, Frassl MA, Eder MM, Rinke K, Bárdossy A, 2014. Use of a weather generator for simulating climate change effects on ecosystems: a case study on Lake Constance. Environ. Modell. Softw. 61:326-338. DOI: https://doi.org/10.1016/j.envsoft.2014.06.028
Schladow SG, Hamilton DP, 1997. Prediction of water quality in lakes and reservoirs: part II - Model calibration, sensitivity analysis and application. Ecol. Model. 96:111-123. DOI: https://doi.org/10.1016/S0304-3800(96)00063-4
Schwefel R, Gaudard A, Wüest A, Bouffard D, 2016. Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): comparing observational findings and modeling. Water Resour. Res. 52:8811-8826. DOI: https://doi.org/10.1002/2016WR019194
Snortheim CA, Hanson PC, McMahon KD, Read JS, Carey CC, Dugan HA, 2017. Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake. Ecol. Model. 343:39-53. DOI: https://doi.org/10.1016/j.ecolmodel.2016.10.014
Stefani F, Salerno F, Copetti D, Rabuffetti D, Guidetti L, Torri G, Naggi A, Iacomini M, Morabito G, Guzzella L, 2016. Endogenous origin of foams in lakes: a long-term analysis for Lake Maggiore (northern Italy). Hydrobiologia 767:249-265. DOI: https://doi.org/10.1007/s10750-015-2506-8
Straile D, Jöhnk K, Rossknecht H, 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol. Oceanogr. 48:1432-1438. DOI: https://doi.org/10.4319/lo.2003.48.4.1432
Straile D, Kerimoglu O, Peeters F, Jochimsen MC, Kümmerlin R, Rinke K, Rothhaupt K-O, 2010. Effects of a half a millennium winter on a deep lake – a shape of things to come? Glob. Change Biol. 16:2844-2856. DOI: https://doi.org/10.1111/j.1365-2486.2009.02158.x
Tapolczai K, Anneville O, Padisák J, Salmaso N, Morabito G, Zohary T, Tadonléké RD, Rimet F, 2015. Occurrence and mass development of Mougeotia spp. (Zygnemataceae) in large, deep lakes. Hydrobiologia 745:17-29. DOI: https://doi.org/10.1007/s10750-014-2086-z
Trolle D, Elliott JA, Mooij WM, Janse JH, Bolding K, Hamilton DP, Jeppesen E, 2014. Advancing projections of phytoplankton responses to climate change through ensemble modelling. Environ. Modell. Softw. 61:371-379. DOI: https://doi.org/10.1016/j.envsoft.2014.01.032
Trolle D, Hamilton DP, Pilditch CA, Duggan IC, Jeppesen E, 2011. Predicting the effects of climate change on trophic status of three morphologically varying lakes: implications for lake restoration and management. Environ. Modell. Softw. 26:354-370. DOI: https://doi.org/10.1016/j.envsoft.2010.08.009
Trolle D, Jørgensen TB, Jeppesen E, 2008a. Predicting the effects of reduced external nitrogen loading on the nitrogen dynamics and ecological state of deep Lake Ravn, Denmark, using the DYRESM-CAEDYM model. Limnologica 38:220-232. DOI: https://doi.org/10.1016/j.limno.2008.05.009
Trolle D, Nielsen A, Rolighed J, Thodsen H, Andersen HE, Karlsson IB, Refsgaard JC, Olesen, JE, Bolding K, Kronvang B, Søndergaard M, Jeppesen E, 2015. Projecting the future ecological state of lakes in Denmark in a 6 degree warming scenario. Clim. Res. 64:55-72. DOI: https://doi.org/10.3354/cr01278
Trolle D, Skovgaard H, Jeppesen E, 2008b. The Water Framework Directive: setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM-CAEDYM. Ecol. Model. 219:138-152. DOI: https://doi.org/10.1016/j.ecolmodel.2008.08.005
Visser PM, Ibelings BW, Bormans M, Huisman J, 2016. Artificial mixing to control cyanobacterial blooms: a review. Aquat. Ecol. 50:423-441. DOI: https://doi.org/10.1007/s10452-015-9537-0
Winder M, 2012. Lake warming mimics fertilization. Nat. Clim. Change 2:771-772. DOI: https://doi.org/10.1038/nclimate1728
Yankova Y, Neuenschwander S, Köster O, Posch T, 2017. Abrupt stop of deep water turnover with lake warming: drastic consequences for algal primary producers. Sci. Rep.-UK 7:13770. DOI: https://doi.org/10.1038/s41598-017-13159-9

Edited by

Diego Fontaneto, CNR-IRSA Water Research Institute, Verbania, Italy

Supporting Agencies

International Commission for the Protection of Italian-Swiss Waters (CIPAIS)

How to Cite

Fenocchi, Andrea, Michela Rogora, Aldo Marchetto, Stefano Sibilla, and Claudia Dresti. 2020. “Model Simulations of the Ecological Dynamics Induced by Climate and Nutrient Load Changes for Deep Subalpine Lake Maggiore (Italy Switzerland): Model Simulations of the Future Ecological Dynamics of Lake Maggiore”. Journal of Limnology 79 (3). https://doi.org/10.4081/jlimnol.2020.1963.

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

List of Cited By :

Crossref logo