Oscar Wembo Ndeo1,2,3$; Torsten Hauffe2; Diana Delicado2; Alidor Kankonda Busanga1 & Christian Albrecht2,3
1Department of Hydrobiology and Aquaculture, University of Kisangani, BP 2012, Kisangani, D. R. Congo.
2Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany.
3Department of Biology, Faculty of Science Mbarara University of Science and Technology, P. O. Box 1410, Mbarara, Uganda.
$Corresponding author: wemboscar@googlemail.com
This html document is reproducing all steps of the statistical analysis performed in the manuscript.
Load necessary R packages:
library(vegan)
library(ape)
library(raster)
library(rgdal)
library(gdistance)
library(AEM)
Load the raw data. These consist of
Comm <- read.table("SupplementaryTab1.csv", header = TRUE, sep ="\t", row.names = 1)
# Create shapefile of the study area:
Congo <- matrix(c(25.14571, 0.5126965, 25.15030, 0.5110112, 25.15383, 0.5099388,
25.15881, 0.5093260, 25.16325, 0.5095558, 25.17083, 0.5112410,
25.17666, 0.5101686, 25.18271, 0.5090195, 25.18761, 0.5071810,
25.19044, 0.5066448, 25.19458, 0.5072576, 25.19780, 0.5069512,
25.20079, 0.5051127, 25.20232, 0.5019720, 25.20354, 0.4987546,
25.20477, 0.4967629, 25.20599, 0.4955373, 25.20737, 0.4959969,
25.20898, 0.4957671, 25.21051, 0.4947712, 25.21373, 0.4942350,
25.21672, 0.4932391, 25.21886, 0.4918603, 25.22024, 0.4890259,
25.22055, 0.4865746, 25.22285, 0.4841233, 25.22430, 0.4845063,
25.22606, 0.4852723, 25.22921, 0.4848893, 25.23150, 0.4864214,
25.23357, 0.4871108, 25.23518, 0.4881833, 25.23595, 0.4899452,
25.23786, 0.4909410, 25.24001, 0.4920901, 25.24207, 0.4923199,
25.24253, 0.4910942, 25.24276, 0.4886429, 25.24031, 0.4878769,
25.23794, 0.4862682, 25.23464, 0.4843531, 25.23081, 0.4832806,
25.22798, 0.4819784, 25.22675, 0.4811357, 25.22966, 0.4787610,
25.23250, 0.4773055, 25.23472, 0.4753138, 25.23740, 0.4733987,
25.23870, 0.4717901, 25.23832, 0.4691089, 25.23204, 0.4637466,
25.22469, 0.4667342, 25.21848, 0.4699516, 25.21417, 0.4728421,
25.21074, 0.4763097, 25.20703, 0.4814621, 25.20546, 0.4857320,
25.20091, 0.4956499, 25.19802, 0.4996765, 25.19251, 0.5025082,
25.18018, 0.5044233, 25.16670, 0.5022018, 25.15605, 0.5003633,
25.14548, 0.5024316, 25.14126, 0.5053425, 25.14149, 0.5096324,
25.14571, 0.5126965), ncol = 2, byrow = TRUE)
Hole <- matrix(c(25.21111, 0.4893689, 25.20879, 0.4884882, 25.20959, 0.4859261,
25.21279, 0.4831238, 25.21439, 0.4820829, 25.21528, 0.4800012,
25.21688, 0.4789604, 25.21840, 0.4778394, 25.21984, 0.4762381,
25.22064, 0.4761581, 25.22264, 0.4756777, 25.22320, 0.4767185,
25.22104, 0.4789604, 25.22048, 0.4805617, 25.21888, 0.4824833,
25.21463, 0.4850454, 25.21207, 0.4864065, 25.21199, 0.4885683,
25.21111, 0.4893689), ncol = 2, byrow = TRUE)
Hole <- Polygon(Hole, hole = TRUE)
Congo <- Polygon(Congo, hole = FALSE)
Congo4Distance <- Polygons( list(Congo, Hole), ID = "a")
Congo4Distance <- SpatialPolygons(list(Congo4Distance),
proj4string=CRS("+proj=longlat +datum=WGS84
+no_defs +ellps=WGS84 +towgs84=0,0,0"))
Connectivity <- Comm[,34:89]
sum(Comm[,1:19])
## [1] 1061
CommOscar <- Comm[,1:19] # Take just the species
CommOscar <- ifelse(CommOscar > 0, 1, 0) # Convert abundancies to presence absence
The following chunks create the spatial Eigenvector maps of the last three sets of predictors.
All of them need the watercourse distances among sampling localities. First, the GIS shapefile of the sampling area and the geographic coordinates of the sampling localities are transformed to an equal distance projection. This avoids distortions because distance of 1? in longitute does not equal 1? in latitude. Although at the Equator, this should not matter.
# Equal distance transformation
CongoAeqd <- spTransform(Congo4Distance, CRSobj = CRS(
"+proj=aeqd +lat_0=0.48 +lon_0=25.19
+ellps=WGS84 +datum=WGS84 +units=m +no_defs+towgs84=0,0,0"))
CongoRas <- raster(xmn=bbox(CongoAeqd)[1,1], xmx=bbox(CongoAeqd)[1,2],
ymn=bbox(CongoAeqd)[2,1],ymx=bbox(CongoAeqd)[2,2],
crs=CongoAeqd@proj4string)
res(CongoRas) <- 10 # Grain size
CongoRas <- rasterize(CongoAeqd, CongoRas)
CongoTrans <- transition(CongoRas, mean, 16) # Lasts a bit...
# Equal distance transformation of sampling localities
CoordGcs <- SpatialPoints(Comm[,c("Longitude","Latitude")], proj4string = CRS(
"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"))
CoordAeqd <- spTransform(CoordGcs, CRSobj = CRS(
"+proj=aeqd +lat_0=0.48 +lon_0=25.19
+ellps=WGS84 +datum=WGS84 +units=m +no_defs+towgs84=0,0,0"))
# Watercourse distances
CostDist <- costDistance(CongoTrans, CoordAeqd)
CostDist <- as.matrix(CostDist)
The distance-based Moran’s eigenvector maps are computed in vegan.
# dbMEM
Mem <- pcnm(CostDist)
MemMor <- Mem$values
MemVectors <- as.data.frame(Mem$vectors)
This chunk of code follows the instructions of Borcard et al., 2011: Numerical ecology with R, page 280 for constructing Asymetric Eigenvector Maps (AEMs). The manually edited connectivity matrix was already loaded at the very beginning. The links between the imaginary sites connecting to S1-S3 and S13 for imposing directionality are removed first. This workflow equals the behavior of the aem
function with the argument rm.link0 = TRUE
, removing all zero links.
# Equals the behavior of aem(..., rm.link0=TRUE):
Connectivity <- Connectivity[,-which(colnames(Connectivity) %in% c("A20", "A21", "A22", "A39"))]
# Edges according to row-order in the connectivity table
Edges <- rbind(c(29,51), c(42,13), c(51,13), c(50,51),
c(49,50), c(48,49), c(47,48), c(46,47),
c(45,46), c(44,45), c(43,44), c(40,43),
c(41,42), c(40,41), c(21,40), c(39,16),
c(18,39), c(38,37), c(37,36), c(36,35),
c(35,34), c(34,33), c(33,32), c(32,31),
c(31,30), c(30,18), c(28,29), c(27,28),
c(26,27), c(25,26), c(24,25), c(23,24),
c(22,23), c(20,19), c(19,18), c(18,17),
c(17,16), c(16,15), c(15,14), c(14,13),
c(13,12), c(12,11), c(11,10), c(10,9),
c(9,8), c(8,7), c(7,6), c(6,5), c(5,4),
c(4,3), c(3,2), c(2,1))
Edges <- Edges[nrow(Edges):1,] # Reverse because connectivity matrix is the other way around.
# Weights are the watercourse distance and need to have the same length than ncol(Connectivity)
EdgeDistances <- apply(Edges, 1, function(x) CostDist[x[1],x[2]]) # Length of the edge
Weights <- 1 - (EdgeDistances/max(EdgeDistances)) # aem(..., rm.link0=TRUE)
#ConnectivityWeighted <- Connectivity * Weights # Forked from AEM:::aem t(t(res.mat) * weight)
ConnectivityWeighted <- t(t(Connectivity) * Weights) # Forked from AEM:::aem t(t(res.mat) * weight)
ConnectivityC <- scale(ConnectivityWeighted, center = TRUE, scale = FALSE)
ConnectivitySvd <- svd(ConnectivityC)
AemVectors <- ConnectivitySvd$u[, ConnectivitySvd$d > 1e-12]
AemVectors <- as.data.frame(AemVectors)
colnames(AemVectors) <- paste0("AEM", 1: ncol(AemVectors))
# Identify AEMs with positive and negative spatial autocorrelation
AemMor <- moran.I.multi(AemVectors, Edges, plot.res = FALSE)
PlotAem <- Comm[, c("Longitude", "Latitude")]
par(las = 1)
plot(Comm[, c("Longitude", "Latitude")], pch = 19)
for(i in 1:nrow(Edges)){
arrows(x0 = PlotAem[Edges[i,1], 1],
x1 = PlotAem[Edges[i,2], 1],
y0 = PlotAem[Edges[i,1],2],
y1 = PlotAem[Edges[i,2],2],
col = "blue", length = 0.15, angle = 15)
text(x = (PlotAem[Edges[i,1], 1] + PlotAem[Edges[i,2], 1])/2, # Midpoints
y = (PlotAem[Edges[i,1],2] + PlotAem[Edges[i,2],2])/2,
labels = colnames(Connectivity)[i], cex = 0.4)
}
text(PlotAem[c("S1", "S2", "S3", "S14"),], labels = c("S1", "S2", "S3", "S14"), pos = 4)
lines(x = c(25.2, 25.225), y= c(0.486,0.5), col = "red")
Fig. S1: Plot of the downstream-directed asymmetric connectivity matrix between sampling locations with the mollusk communities ‘S1’-‘S3’ and ‘S14’ linked to two separated imaginary origins respectively, that is, they are not connected to any sampled upstream community. The red lines displays the Wagenia Cataract.
The fifth set of predictors uses the same AEMs than the fourth set but weights the links of the connectivity matrix according to the number of barriers up- and downstream.
# First 15 edges are not crossing the barrier
D <- c(rep(1, 15), rep(0, ncol(Connectivity)-15))
D[which(colnames(Connectivity) %in% c("A16", "A41", "A55", "A54"))] <- 1
WeightsBarrier <- 1 - D/1
ConnectivityWeightedBarrier <- t(t(Connectivity) * WeightsBarrier) # Forked from AEM:::aem t(t(res.mat) * weight)
ConnectivityCBarrier <- scale(ConnectivityWeightedBarrier, center = TRUE, scale = FALSE)
ConnectivitySvdBarrier <- svd(ConnectivityCBarrier)
AemVectorsBarrier <- ConnectivitySvdBarrier$u[, ConnectivitySvdBarrier$d > 1e-12]
AemVectorsBarrier <- as.data.frame(AemVectorsBarrier)
colnames(AemVectorsBarrier) <- paste0("AEM", 1: ncol(AemVectorsBarrier))
# Identify AEMs with positive and negative spatial autocorrelation
AemMorBarrier <- moran.I.multi(AemVectorsBarrier, Edges, plot.res = FALSE)
The next chunk of code is creating Fig. S2.
Tax <- paste0("(((Lanistes_nsendweensis:2,Lanistes_congicus:2):3,",
"(((Potadoma_p._spoliata:1,Potadoma_ponthiervillensis:1):1,",
"(Potadoma_s._inculta:1,Potadoma_superba:1):1,",
"Potadoma_alutacea:2,Potadoma_liricinta:2,Potadoma_ignobilis:2):2,",
"(Melanoides_cf._tuberculata:2,Melanoides_wagenia:2):2):1,",
"(Bulinus_sp.:2,Bulinus_cf._globosus:2,Bulinus_cf._truncatus:2):3):1,",
"((Etheria_elliptica:4,Coelatura_stanleyvillensis:4,",
"Aspatharia_pfeifferiana:4):1,",
"(Pisidium_pirothi:3,Sphaerium_sp.:3):2):1):1;")
HierTax <- read.tree(text = Tax)
Freq <- rbind(colSums(Comm[Comm$Group == "Downstream",1:19]),
colSums(Comm[Comm$Group == "Upstream",1:19]))
# Order according to taxonomy:
Freq <- Freq[,c("Lanistes_nsendweensis", "Lanistes_congicus", "Potadoma_p._spoliata",
"Potadoma_ponthiervillensis", "Potadoma_s._inculta", "Potadoma_superba",
"Potadoma_alutacea", "Potadoma_liricinta", "Potadoma_ignobilis",
"Melanoides_cf._tuberculata", "Melanoides_wagenia", "Bulinus_sp.",
"Bulinus_cf._globosus", "Bulinus_cf._truncatus", "Etheria_elliptica",
"Coelatura_stanleyvillensis", "Aspatharia_pfeifferiana", "Pisidium_pirothi",
"Sphaerium_sp.")]
layout(matrix(1:2, nc = 2, nr = 1), c(0.7,0.3))
par(mar=c(4.8,1.1,1.8,0.1))
plot(HierTax, x.lim = 11, edge.width = 2)
abline(v = 0, lty = 2)
par(las = 3)
mtext(text = "Class", side = 1, at = 0)
abline(v = 1, lty = 2)
par(las = 3)
mtext(text = "Order", side = 1, at = 1)
abline(v = 2, lty = 2)
par(las = 3)
mtext(text = "Family", side = 1, at = 2)
abline(v = 3, lty = 2)
par(las = 3)
mtext(text = "Genus", side = 1, at = 3)
abline(v = 4, lty = 2)
par(las = 3)
mtext(text = "Species", side = 1, at = 4)
abline(v = 5, lty = 2)
par(las = 3)
mtext(text = "Subspecies", side = 1, at = 5)
par(las = 1, mar = c(4.1,0,1.1,0.7))
barplot(Freq, horiz = TRUE, axisnames = FALSE, xlab = "Frequency", xlim = c(0,300))
legend("topright", bty = "n", pch = 22, pt.bg = c("grey90", "grey30"), pt.cex = 2,
legend = c("Downstream", "Upstream"))
Fig. S2: Mollusk community composition. (a) Systematics of mollusk species of the Wagenia Cataract. (b) Total number and share of individuals occurring up- and downstream (for nomenclature used see text).
We calculated community (dis)similarity by the Jaccard index and subjected the pairwise distance matrix to five individual distance-based redundancy analyses (db-RDA). The new vegan 2.4 function dbrda
performs a db-RDA with the Jaccard distance. We identified significant predictors by forward selection ordiR2step
through the double-stop criterion.
Calculate pairwise Jaccard distances between mollusk communities.
CommDist <- vegdist(x = CommOscar, method = "jaccard")
# Extended step-across because of high beta diversity
CommDistSt <- stepacross(CommDist, path="extended", toolong = 0.95)
## Too long or NA distances: 147 out of 1275 (11.5%)
## Stepping across 147 dissimilarities...
## Stepping across 2 dissimilarities...
Fix random number generater to reproduce the very same results.
set.seed(1)
Env0 <- dbrda(CommDistSt ~ 1, data = Comm) # Model with intercept only
Env1 <- dbrda(CommDistSt ~ Depth + Sand + Gravel + Clay +
Mud + Detritus + Macrophytes + Stones + Rock,
data = Comm)
EnvSel <- ordiR2step(Env0, scope = formula(Env1), direction = "forward", Pin = 0.05,
R2permutations= 9999, trace = FALSE, steps = 500)
EnvSel$anova
## R2.adj Df AIC F Pr(>F)
## + Rock 0.025825 1 141.95 2.3255 0.044 *
## + Sand 0.055672 1 141.31 2.5487 0.028 *
## <All variables> 0.078547
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RsquareAdj(EnvSel)
## $r.squared
## [1] 0.09344492
##
## $adj.r.squared
## [1] 0.0556718
RsquareAdj(dbrda(CommDistSt ~ Rock, data = Comm))$adj.r.squared
## [1] 0.02582516
RsquareAdj(dbrda(CommDistSt ~ Sand, data = Comm))$adj.r.squared
## [1] 0.02138792
palette(c("grey90", "grey30"))
DbRdaScores <- scores(EnvSel, display = c("sites", "bp"), scaling = 3)
par(las = 1, mar = c(5.1,4.1,4.1,0.1), mgp = c(3,0.7,0), tcl = -0.3, cex = 0.7)
plot(DbRdaScores$sites, pch = 21, bg = Comm$Group, cex = 1.5)
abline(h = 0, lty = 2)
abline(v = 0, lty = 2)
arrows(x0 = 0, x1 = DbRdaScores$biplot[1,1], y0 = 0, y1 = DbRdaScores$biplot[1,2], length = 0.1, angle = 15 )
arrows(x0 = 0, x1 = DbRdaScores$biplot[2,1], y0 = 0, y1 = DbRdaScores$biplot[2,2], length = 0.1, angle = 15)
legend("topleft", legend = c("Upstream", "Downstream"), pch = 21, pt.bg = c("grey90", "grey30"), pt.cex = 1.5)
text(x = DbRdaScores$biplot[1,] + c(0.15, 0.05), y = DbRdaScores$biplot[2,] + c(0.1,-0.05), labels = c("Rocks", "Sand"))
Manuscript Fig. 2. Biplot of the distance-base redundancy analysis (db-RDA) portraying the correlation of the mollusk community composition with significant environmental predictors and the insignificant cataract-barrier after removing the effect of the significant spatial predictors (see also Tab. 1).
Bar0 <- dbrda(CommDistSt ~ 1, data = Comm) # Model with intercept only
Bar1 <- dbrda(CommDistSt ~ Group, data = Comm)
BarSel <- ordiR2step(Bar0, scope = formula(Bar1), direction = "forward",
R2permutations= 9999, trace = FALSE, steps = 500)
BarSel$anova
## NULL
The barrier is not significant with an alpha level of 0.05. Let’s increase the alpha level to calculate the corresponding p-value for including barrier.
BarSel <- ordiR2step(Bar0, scope = formula(Bar1), direction = "forward", Pin = 0.4,
R2permutations= 9999, trace = FALSE, steps = 500)
BarSel$anova
## R2.adj Df AIC F Pr(>F)
## + Group 0.0052121 1 143.02 1.262 0.284
## <All variables> 0.0052121
MemPos0 <- dbrda(CommDistSt ~ 1, data = MemVectors, add = TRUE) # Model with intercept only
MemPos1 <- dbrda(CommDistSt ~ ., data = MemVectors[,which( MemMor >= 0 )])
MemPosSel <- ordiR2step(MemPos0, scope = formula(MemPos1), direction = "forward", Pin = 0.05,
R2permutations= 9999, trace = FALSE, steps = 500)
MemPosSel$anova
## NULL
AemPos0 <- dbrda(CommDistSt ~ 1, data = AemVectors) # Model with intercept only
AemPos1 <- dbrda(CommDistSt ~ ., data = AemVectors[,which( AemMor[[1]][,1] >= 0 )])
AemPosSel <- ordiR2step(AemPos0, scope = formula(AemPos1), direction = "forward", Pin = 0.05,
R2permutations= 9999, trace = FALSE, steps = 500)
AemPosSel$anova
## R2.adj Df AIC F Pr(>F)
## + AEM5 0.04490 1 140.94 3.3506 0.006 **
## + AEM13 0.07490 1 140.27 2.5888 0.024 *
## + AEM15 0.10064 1 139.75 2.3740 0.040 *
## + AEM6 0.12575 1 139.21 2.3497 0.040 *
## + AEM1 0.15167 1 138.56 2.4055 0.036 *
## + AEM3 0.17739 1 137.84 2.4072 0.026 *
## <All variables> 0.36895
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RsquareAdj(AemPosSel)
## $r.squared
## [1] 0.2761045
##
## $adj.r.squared
## [1] 0.1773915
RsquareAdj(dbrda(CommDistSt ~ AEM1, data = AemVectors[,which( AemMor[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.0212381
RsquareAdj(dbrda(CommDistSt ~ AEM3, data = AemVectors[,which( AemMor[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.02000412
RsquareAdj(dbrda(CommDistSt ~ AEM5, data = AemVectors[,which( AemMor[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.04490134
RsquareAdj(dbrda(CommDistSt ~ AEM6, data = AemVectors[,which( AemMor[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.02151555
RsquareAdj(dbrda(CommDistSt ~ AEM13, data = AemVectors[,which( AemMor[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.02846662
RsquareAdj(dbrda(CommDistSt ~ AEM15, data = AemVectors[,which( AemMor[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.0231646
layout(matrix(1:6, ncol = 3, nrow = 2))
par(mar = c(1,0.1,1,0.1))
for(i in c(1, 3, 5, 6, 13, 15)){
plot(Congo4Distance, col = "lightblue", main = paste0("AEM", i))
points(Comm[,c("Longitude","Latitude")],
cex = abs(AemVectors[,i])*5, pch = 22,
bg = ifelse(AemVectors[,i] >= 0, "grey", "white"))
}
Fig S3: Plot showing the four significant Asymetric Eigenvector Maps (AEMs) modeling downstream-directed spatial processes such as the spread of chemical water parameters or species dispersal. Similar square size and equal color indicates similar mollusk community composition. High suffix of the AEM represent increasingly smaller spatial scale predictions.
AemBarrierPos0 <- dbrda(CommDistSt ~ 1, data = AemVectorsBarrier[, which( AemMorBarrier[[1]][,1] >= 0 )])
AemBarrierPos1 <- dbrda(CommDistSt ~ ., data = AemVectorsBarrier[, which( AemMorBarrier[[1]][,1] >= 0 )])
AemBarrierPosSel <- ordiR2step(AemBarrierPos0, scope = formula(AemBarrierPos1),
direction = "forward", permutations = 9999, steps = 500, trace = FALSE)
AemBarrierPosSel$anova
## R2.adj Df AIC F Pr(>F)
## + AEM4 0.046799 1 140.84 3.4548 0.0059 **
## + AEM6 0.077027 1 140.15 2.6048 0.0212 *
## + AEM11 0.104748 1 139.52 2.4863 0.0313 *
## + AEM10 0.129196 1 139.01 2.3195 0.0420 *
## <All variables> 0.256360
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RsquareAdj(AemBarrierPosSel)
## $r.squared
## [1] 0.1988599
##
## $adj.r.squared
## [1] 0.1291956
RsquareAdj(dbrda(CommDistSt ~ AEM4, data = AemVectorsBarrier[,which( AemMorBarrier[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.0467989
RsquareAdj(dbrda(CommDistSt ~ AEM6, data = AemVectorsBarrier[,which( AemMorBarrier[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.02865593
RsquareAdj(dbrda(CommDistSt ~ AEM10, data = AemVectorsBarrier[,which( AemMorBarrier[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.02081276
RsquareAdj(dbrda(CommDistSt ~ AEM11, data = AemVectorsBarrier[,which( AemMorBarrier[[1]][,1] >= 0 )]))$adj.r.squared
## [1] 0.02501803
layout(matrix(1:4, ncol = 4, nrow = 1))
par(mar = c(1,0.1,1,0.1))
for(i in c(4, 6, 10, 11)){
plot(Congo4Distance, col = "lightblue", main = paste0("AEM", i))
points(Comm[,c("Longitude","Latitude")],
cex = abs(AemVectorsBarrier[,i])*5, pch = 22,
bg = ifelse(AemVectorsBarrier[,i] >= 0, "grey", "white"))
}
Manuscript Fig 3: Plot showing the five significant Asymetric Eigenvector Maps (AEMs) modeling the homogenizing effect of the Wagenia Cataract. Similar square size and equal color indicates similar mollusk community composition. High suffix of the AEM represent increasingly smaller spatial scale predictions. Note that the sampling locations downstream of the cataract have the same square size and color and therefore approximate a homogeneous community composition. In contrast, the values of the AEMs differ among upstream locations, showing a spatial structure in mollusk community composition.
We assessed the differential contribution of all significant sets of predictors on community composition by subjecting the identified significant predictors to variation partitioning analysis. Moreover, we assessed the significance of each testable fraction by 9999 permutations. The variation partioning varpart
now also directly accept distance matrices by runing dbrda
internally.
# Variation partitioning
MmEnv <- model.matrix(~ Rock + Sand, data = Comm)[,-1]
MmAemVectors <- model.matrix(~ AEM1 + AEM3 + AEM5 + AEM6 + AEM13 + AEM15, data = AemVectors)[,-1]
MmAemVectorsBarrier <- model.matrix(~ AEM4 + AEM6 + AEM10 + AEM11, data = AemVectorsBarrier)[,-1]
Venn <- varpart(CommDistSt,
MmEnv,
AemVectorsBarrier[,c(4, 6, 10, 11)],
AemVectors[,c(1, 3, 5, 6, 13, 15)])
# Significance of individual fractions
EnvFrac <- dbrda(CommDistSt ~ MmEnv + Condition(MmAemVectors) + Condition(MmAemVectorsBarrier))
anova(EnvFrac, step = 500, permutations = 9999)
## Permutation test for dbrda under reduced model
## Permutation: free
## Number of permutations: 9999
##
## Model: dbrda(formula = CommDistSt ~ MmEnv + Condition(MmAemVectors) + Condition(MmAemVectorsBarrier))
## Df SumOfSqs F Pr(>F)
## Model 2 0.7969 1.7614 0.0744 .
## Residual 38 8.5961
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AemFrac <- dbrda(CommDistSt ~ MmAemVectors + Condition(MmEnv) + Condition(MmAemVectorsBarrier))
anova(AemFrac, step = 500, permutations = 9999)
## Permutation test for dbrda under reduced model
## Permutation: free
## Number of permutations: 9999
##
## Model: dbrda(formula = CommDistSt ~ MmAemVectors + Condition(MmEnv) + Condition(MmAemVectorsBarrier))
## Df SumOfSqs F Pr(>F)
## Model 6 3.0533 2.2496 6e-04 ***
## Residual 38 8.5961
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AemBarrierFrac <- dbrda(CommDistSt ~ MmAemVectorsBarrier + Condition(MmAemVectors) + Condition(MmEnv))
anova(AemBarrierFrac, step = 500, permutations = 9999)
## Permutation test for dbrda under reduced model
## Permutation: free
## Number of permutations: 9999
##
## Model: dbrda(formula = CommDistSt ~ MmAemVectorsBarrier + Condition(MmAemVectors) + Condition(MmEnv))
## Df SumOfSqs F Pr(>F)
## Model 4 1.8815 2.0794 0.0071 **
## Residual 38 8.5961
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Figure 4
par(las = 1, mar = c(5.1,4.1,4.1,0.1), mgp = c(3,0.7,0), tcl = -0.3, cex = 0.7)
plot(Venn, digits = 2, cutoff = 0.0001, id.size = 1,
Xnames = c("Environment", "Homogenizing\ncataract", "Downstream-directed\nspatial"))
text(1.11, 0.04, "**")
text(0.63, -0.82, "***")
Manuscript Fig. 4. Venn diagram showing the individual (non-intersecting areas) and common (intersecting areas) fractions of variance in mollusk community composition explained by our three different sets of predictors. *** p < 0.0001 ** p < 0.01 * p < 0.05
sessionInfo()
## R version 3.4.0 (2017-04-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] AEM_0.6 boot_1.3-19 spdep_0.6-13 gdistance_1.2-1
## [5] Matrix_1.2-10 igraph_1.0.1 rgdal_1.2-7 raster_2.5-8
## [9] sp_1.2-4 ape_4.1 vegan_2.4-3 lattice_0.20-35
## [13] permute_0.9-4
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.10 knitr_1.15.1 cluster_2.0.6 magrittr_1.5
## [5] gmodels_2.16.2 splines_3.4.0 MASS_7.3-47 stringr_1.2.0
## [9] tools_3.4.0 parallel_3.4.0 grid_3.4.0 nlme_3.1-131
## [13] mgcv_1.8-17 coda_0.19-1 deldir_0.1-14 gtools_3.5.0
## [17] htmltools_0.3.5 yaml_2.1.14 rprojroot_1.2 digest_0.6.12
## [21] evaluate_0.10 rmarkdown_1.5 gdata_2.17.0 stringi_1.1.5
## [25] compiler_3.4.0 LearnBayes_2.15 backports_1.0.5 expm_0.999-2