

JOURNAL OF LIMNOLOGY

DOI: 10.4081/jlimnol.2025.2192

SUPPLEMENTARY MATERIAL

Revisiting lakes within the Rideau Canal system (Ontario, Canada) to assess the impacts of multiple environmental stressors over the past ~25 years using diatombased paleolimnology

Kapillesh Balasubramaniam,^{1*} Kathleen M. Rühland,¹ Andrew M. Paterson,²

John P. Smol¹

¹Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Queen's University, Kingston ²Environmental Monitoring and Reporting Branch, Ontario Ministry of Environment, Conservation and Parks, Dorset, ON, Canada

*Corresponding author: <u>15kb63@queensu.ca</u>

Key words: canal construction; climate warming; diatoms; eutrophication; shallow lakes; zebra mussels.

Tab. S1. The results of Spearman rank correlation analysis between MAAT trends and paleo-proxy (diatom and VRS-Chla) data. To integrate the diatom data with the MAAT data prior to correlation analysis, average air temperature during the period of accumulation for each sediment interval was calculated to account for the differences in temporal resolution between instrumental and sedimentary data. The boxes shaded in green indicate significant correlations (p<0.05).

Parameter	Big Rideau L.	Indian L.	Upper Rideau L.	Lower Rideau L.	L. Opinicon	Otter L. (CR)
PC1	<i>p</i> = 0.0012;	<i>p</i> = 0.001486;	<i>p</i> = 0.074;	<i>p</i> = 0.005;	<i>p</i> = 0.003981;	<i>p</i> = 2.2e-16;
	rho = 0.82	rho = -0.7230392	rho = -0.46	rho = 0.63	rho = 0.7582418	rho = 0.8928571
PC2	p = 0.016;	<i>p</i> = 0.04904;	<i>p</i> = 0.018;	<i>p</i> = 0.1762;	<i>p</i> = 0.4043;	<i>p</i> = 0.9949;
	rho = 0.68	rho = -0.4877451	rho = -0.58	rho = 0.333	rho = 0.2527473	rho = -0.0035714
Small Benthic	p = 0.0794;	<i>p</i> = 0.7155;	p = 0.126;	p = 0.008074;	<i>p</i> = 0.06416;	p = 0.5844;
Fragilarioid Sum	rho = 0.53	rho = -0.0955882	rho = 0.40	rho = -0.603	rho = -0.532967	rho = 0.1537087
Planktonic Sum	p = 0.3593; rho = 0.29	<i>p</i> = 0.01626; rho = 0.5808824	NA	<i>p</i> = 0.0002; rho = 0.7702	<i>p</i> = 0.007498; rho = 0.7197802	<i>p</i> = 0.00108; rho = 0.775
<i>Aulacoseira</i> Sum	<i>p</i> = 0.097;	<i>p</i> = 0.01331;	<i>p</i> = 0.0008;	<i>p</i> = 0.01597;	<i>p</i> = 0.2341;	<i>p</i> = 0.000674;
	rho = -0.50	rho = -0.5955882	rho = -0.75	rho = -0.559	rho = -0.3548834	rho = -0.7928571
Hill's N2	<i>p</i> = 0.01902;	<i>p</i> = 0.9209;	p = 0.4473;	<i>p</i> = 0.1243;	<i>p</i> = 0.05813;	<i>p</i> = 0.4819;
	rho = 0.6619975	rho = 0.02696078	rho = 0.20	rho = 0.37584	rho = 0.543956	rho = -0.1964286
VRS-Chla	<i>p</i> = 0.001561;	<i>p</i> = 0.09752;	p = 0.0002;	<i>p</i> = 0.0006;	<i>p</i> = 0.3436;	<i>p</i> = 0.006525;
	rho = 0.8056054	rho = 0.4166667	rho = 0.80	rho = 0.727	rho = -0.2857143	rho = 0.6821429

Fig. S1. Results of ²¹⁰Pb dating using gamma spectrometry for Big Rideau L. (**A**), Indian L. (**B**), Lower Rideau L. (**C**), Upper Rideau (**D**), and Otter L. (**E**). Gamma activities for ²¹⁰Pb, ¹³⁷Cs, and mean ²¹⁴Pb (proxy for supported/background ²¹⁰Pb levels) were plotted against sediment core depth (right panels). Age-depth plots showing the estimated ²¹⁰Pb dates (with standard errors) derived from the constant rate of supply (CRS) model plotted against sediment core depth are shown in the upper left-hand panels. Sedimentation accumulation rates (with standard errors) based on CRS models were plotted against estimated ²¹⁰Pb dates and are shown in the lower left panels.

Fig. S2. Trends in Hill's N2 diversity index (plotted as the number of 'very abundant' taxa (*sensu* Birks, 2010), scaled by CRS-estimated ²¹⁰Pb dates for Big Rideau L. (**A**), Indian L. (**B**), Lower Rideau L. (**C**), Upper Rideau L. (**D**), L. Opinicon (**E**), and Otter L (**F**). The vertical dashed lines represent the mean number of 'very abundant' taxa over the span of the record. Trends were highlighted using LOESS with a span of 0.8 (blue solid lines). The date of canal construction is highlighted with a blue arrow. Dates in bold and italicized font represent extrapolated age estimates that correspond to the construction of the Rideau Canal (~1830); these dates are viewed with caution as the associated errors are potentially high.

Fig. S3. Trends in visible range spectroscopy-inferred chlorophyll-*a* (VRS-Chla) concentrations (expressed as Z-scores) scaled by CRS-estimated ²¹⁰Pb dates for Big Rideau L. (**A**), Indian L. (**B**), Lower Rideau L. (**C**), Upper Rideau L. (**D**), L. Opinicon (**E**), and Otter L. (**F**). The vertical dashed lines represent the mean VRS-Chla concentrations over the span of the record. Trends in VRS-Chla were highlighted using LOESS with a span of 0.8 (blue solid lines). The horizontal dashed line and blue arrow depicts the date of canal construction. Dates in bold and italicized font represent extrapolated age estimates that correspond to the construction of the Rideau Canal (~1830); these dates are viewed with caution as the associated errors are potentially high.

Fig. S4. Comparison between mean annual air temperature (MAAT) data (expressed as Z-scores and depicted by black symbols and lines) and principal component analysis (PCA) axis 1 sample scores (blue symbols and lines) for Big Rideau L. (**A**), Indian L. (**B**), Lower Rideau L. (**C**), Upper Rideau L. (**D**), L. Opinicon (**E**), and Otter L. (**F**). Included are the results of a Spearman rank correlation analysis. Prior to undertaking correlation analysis, the diatom and MAAT data were integrated by averaging the air temperature recorded during the period of accumulation for each sediment interval to account for the differences in temporal resolution between instrumental and sedimentary data. Shaded area depicts the post-1990 period (the period after the previous paleo studies were undertaken) focused on for this study and the period of greatest regional air temperature acceleration.