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INTRODUCTION 

Nearly three-quarters of the Earth’s surface is covered 
by oceans, seas and smaller inland water bodies. Infor-
mation about benthic communities alongside bathymetry 
is essential since many benthic communities and ecosys-
tems of coastal zones, estuaries and inland water bodies 
have both commercial and ecological value, which makes 
these regions valuable in terms of biodiversity and marine 
resources (Werdell and Roesler, 2003). Therefore, it is 
necessary to carefully plan activities, which could affect 
the state of coastal waters and continuously monitor their 
conditions. Coastal zone receives all lands discharges, 
such as fresh-water, erosion products and sewage, and it 
is highly affected by different marine processes, including 
wave action, tidal currents, as well as storm surges 
(Halpern et al., 2008). Taking this into account it can be 
concluded that coastline is a very valuable dynamical bor-
der area because of its morphological and ecological char-
acteristics (Barale and Folving, 1996). 

Benthic habitats are important components of coastal 
zone ecosystem, both marine and lacustrine. The vegeta-
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ABSTRACT 

Accurate determination of the water depth and benthic macroalgae composition in coastal and inland water bodies is important due 
to the high commercial and ecological value of these regions. Benthic habitat mapping by conventional methods provides good accuracy, 
but these methods are very expensive and limited by manpower and time factor, which is necessary for mapping large areas. Remote 
sensing methods significantly complement contact measurements and give additional information about the hard-to-reach areas. The 
usefulness of free Sentinel-2 data in bathymetry and habitat mapping has been demonstrated in clear oceanic waters. The aim of this 
study was to further test the suitability of Sentinel-2 imagery in creating maps of dominant benthic types, as well as in estimating ba-
thymetry in optically complex marine and lake waters. Two study sites were selected to cover a representative range of optical variability 
- Lake Garda in northern Italy (an intermediate between clear ocean and optically very complex waters) and Viimsi peninsula on the 
Estonian side of the Gulf of Finland, in the Baltic Sea. The results show that Sentinel-2 imagery with 10 m spatial resolution is suitable 
for bathymetry and habitat mapping in optically complex inland and coastal waters. Our results show that bathymetry mapping is suf-
ficiently accurate in waters less than 4 m deep in the case of the Baltic Sea and up to 7 m deep in Lake Garda. In such depths, the R2 

was above 0.93 in all four Sentinel-2 images used in the study. 
Bottom type mapping accuracy was in all cases over 73%, 
which is considered to be good, but due to the limited number 
of sampling points in both test sites, further studies are needed. 
The Sentinel-2 data quality and no cost of the imagery for users 
make it very useful for mapping bathymetry and shallow water 
habitats over large coastal areas or high number of lakes, espe-
cially in hard to reach by in situ methods areas. Moreover, the 
frequent revisit time allows moving from one-off maps to mon-
itoring of temporal changes happening in dynamic shallow in-
land and coastal waters.
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tion contributes to the primary production in coastal areas, 
supporting grazing and detrital food webs. Aquatic vege-
tation is also providing food, spawning and nursery 
grounds for fishes and other invertebrate species (Fran-
cour, 1997; Hemminga and Duarte, 2000). Benthic vege-
tation helps to prevent coastal erosion by binding 
sediments and reduces nutrient loading and other forms 
of pollution (Fonseca, 1989). 

The health of vegetation communities in coastal wa-
ters depends on suitable environmental conditions. Sub-
merged aquatic habitat requires light for photosynthesis, 
growth, and survival (Dennison, 1987). The minimal re-
quirement for light conditions of a particular species de-
termines the maximal water depth at which it can survive 
(Dennison, 1993). The eutrophication and nutrient enrich-
ment of coastal waters is a result of human activities and 
is widely recognized as a worldwide pollution threat 
(Halpern et al., 2008; Schramm, 1996). Specific changes, 
such as decline or disappearance of certain plant commu-
nities, reduced diversity of the flora, blooms of short-lived 
annual forms and changes in depth distribution of benthic 
algae, have occurred in vegetation communities due to in-
creasing eutrophication and decreasing light availability 
(Schramm, 1996). 

In the context of ongoing climate change, high fluctu-
ations in water levels are of fundamental importance, long 
periods without precipitation (snow and rain) are causing 
major problems in the management of water resources 
(Leira and Cantonati, 2008). Sustainable management of 
coastal environments requires the regular collection of ac-
curate information on indicators of ecosystems health 
(Phinn et al., 2005). Benthic habitat coverage and trends of 
the changes in it are indicators of water quality (Pearson, 
1978). The purpose of monitoring is to track short-term and 
long-term changes in species distribution and structure. 
Benthic habitat mapping by conventional field-based meth-
ods (diving, underwater video, grab samples) provides 
good accuracy (Werdell and Roesler, 2003), but these are 
limited by manpower and the time factor, which is neces-
sary for mapping large areas. Some areas are even hard to 
reach with conventional methods. Many coral reef lagoons, 
shallow reefs, tidal areas, and waterbodies, for example, 
are surrounded by wetlands or dense vegetation that makes 
it difficult to obtain information about benthic habitats. Re-
mote sensing is the most useful tool in these situations.Re-
mote sensing methods significantly complement field 
observations and give additional information about the 
hard-to-reach areas. Optical satellite data can be an efficient 
alternative for bathymetric derivation in shallow and clear 
coastal waters, providing temporal and spatial continuity 
(Phinn et al., 2005; Dekker et al., 2001; Fyfe, 2003). Time 
series of satellite imagery allow studying the long-term 
changes in benthic vegetation (Lõugas et al., 2020). The 
potential of using remote sensing methods to retrieve ba-

thymetry information and mapping the types of substrate 
cover has been used in very clear shallow waters (<30 m) 
worldwide (Mumby and Edwards, 2002; Kutser and 
Dekker, 2003; Kutser et al., 2006; Knudby et al., 2010; 
Dekker et al., 2011; Hedley et al., 2018) with only few ex-
amples found in more turbid optically complex waters 
(Lafon et al., 2002; Vahtmäe et al., 2006; Bramante et al., 
2013; Caballero et al., 2019; Casal et al., 2020; Kuhwald 
et al., 2022). 

The launch of Sentinel-2 on June 23rd in 2015, with 
10-60 m spatial resolution, multi-spectral instrument 
(MSI) with 13 spectral channels in the visible/near in-
frared (VNIR) and short wave infrared spectral range 
(SWIR) and 3-5 days (depending on the latitude) revisit 
time, opened new possibilities in mapping changes that 
happen in shallow water coastal environments. The use-
fulness of Sentinel-2 for such purposes has been demon-
strated for oceanic, marine and inland waters (Hedley et 
al., 2018; Casal et al., 2020; Traganos and Reinartz, 2018; 
Fritz et al., 2019; Ghirardi et al., 2019; Caballero and 
Stumpf, 2019; Yunus et al., 2019; Wilson et al., 2020; 
Dörnhöfer et al., 2016). However, majority of the studies 
have been carried out in clear waters of Pacific and At-
lantic Oceans and in relatively clear lakes. The aim of this 
study was to further demonstrate the suitability of Sen-
tinel-2 in creating maps of dominant benthic types, as well 
as in estimating bathymetry in optically complex shallow 
marine and lacustrine waters. 

 
 

METHODS 

Study sites 

Two study sites were selected to cover a representative 
range of optical variability and aquatic ecosystems. The 
first site was Lake Garda in northern Italy (Figs. 1 and 2) 
and the second test site was Viimsi peninsula in Estonian 
side of the Gulf of Finland, in the Baltic Sea (Fig. 3). Lake 
Garda is a subalpine lake with a surface area of 368 km2, a 
water volume of 49 km3 and a mean depth 133.3 m (max 
350 m). Lake Garda is an important resource for recreation 
and tourism and an essential water supply for drinking, 
agriculture, industry and fishing for the region. Water con-
ditions range from oligotrophic to mesotrophic and shallow 
coastal areas are inhabited by a variety of macrophytes, 
whose value is very relevant in preserving the oligotrophic 
status of the Lake Garda waters (Salmaso et al., 2018). 
Prairies of rooted macrophytes comprise many different 
species (Lagarosiphon, Vallisneria, Potamogeton, Najas 
and Chara) and with well recognized ecological functions. 
The largest areas of bottoms colonized by macrophytes are 
situated in the southern part of the lake. Another relevant 
shallow area is located in the pelagic waters of the south-
eastern basin, where native macrophytes species can grow, 
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as they are less disturbed by anthropogenic factors. Of great 
importance in the lake are the public and private naviga-
tions, for a total of 27 harbours in the whole basin. A recent 
report from 2016 from NaviGarda shipping company, 
whose fleet is made up of 21 units, documented over 2.5 
million people transported in 2016. 

The Estonian site was in the Gulf of Finland area close 
to Tallinn (Fig. 3). Viimsi peninsula and Aegna Island sur-
roundings are under great anthropogenic stress. Tallinn 
city with many ports and frequent ship traffic is located 
at the west side of the peninsula and the Port of Muuga 
(the largest port in the area) is located on the eastern part 
of the peninsula. The peninsula itself is under heavy con-
struction since it is a fast-growing area for housing and 
industry. The substrate in the study area is mainly sand, 
gravel and large rocks transported to the area from Scan-
dinavian mountains during the ice age. The latter makes 
conventional sampling quite dangerous. Dominating flora 
is brown macroalgae Fucus vesiculosus (the main habitat 
forming species in the Baltic Sea) and green filamentous 
algae like Cladophora glomerata (Fig. 4). For the Baltic 
Sea benthic habitats and substrate types we have a spectral 
library collected over many years (Vahtmäe et al., 2006; 
Kutser et al., 2006a; Kutser et al., 2006b; Vahtmäe and 
Kutser, 2013; Kotta et al., 2014). Therefore, there was no 
need in collecting extra reflectance [Rrs (λ)] spectra of 
macroalgae and plants. 

  
In situ data 

In Lake Garda, a field campaign was carried out on 
June 6-8, 2017. The locations of sampling stations are 
shown in Fig. 1. Both water column parameters and ben-
thic habitats were characterized in optically shallow wa-

ters while only water column properties were measured 
in the deep stations. Remote sensing reflectance of the 
water was measured with Ramses (TriOS) spectropho-
tometers. The measurements were carried out with having 
an upwelling radiance sensor just below the water surface 
to avoid glint. Optical water properties were measured 
with WetLabs instrument set, which consists of a hyper-
spectral absorption and attenuation meter AC-S, backscat-
tering sensor ECO-BB3 that measures backscattering 
coefficients at three wavelengths and a volume scattering 
sensor ECO-VSF3 measuring scattering at three wave-
lengths and three angles. The WetLabs instrument pack-
age included also a CTD for temperature, salinity and 
depth measurements according to instructions described 
by Uusõue et al. (2022). The frame was slowly lowered 
through the water column and instruments were measured 
continuously. 

Water samples were collected from the surface layer 
(between the surface and 0.5 m depth) and taken for de-
termining concentrations of chlorophyll-a (Jeffrey and 
Humphrey, 1975), CDOM (Davis-Colley and Vant, 1987) 
and total suspended matter (EPA, 1993). Total and CDOM 
absorption coefficients were measured in laboratory using 
an a-sphere (HobiLabs) integrating cavity absorption 
meter. Optical water properties were characterized in dif-
ferent environments – deep water stations (blue squares 
in Fig. 1), macrophyte dominated shallow water areas (red 
square), sandy shores (yellow square) and macroalgae 
dominated areas (green square). The total number of bio-
optical sampling stations was 16 while bottom was 
mapped with drop video in 22 stations. The videos were 
later analysed in laboratory using the methodology by 
Möller et al. (2009) to estimate species composition and 
the percentage of benthic habitat cover. Specimen of 

Fig. 1. The location map of Lake Garda test site.
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macrophytes and macroalgae were taken to the boat where 
reflectance spectra were measured with Ramses spectrom-
eters and photos were taken to help video interpreters who 
are not familiar with the Lake Garda flora. Fieldwork was 
planned during a Sentinel-2A overpass. However, there 
were thunderstorms in the Lake Garda area during the 
Sentinel-2 data acquisition. Therefore, images from June 
26 and July 8, 2017, were used. 

In Viimsi test site, field campaign was more challeng-
ing due to wind and waves. It did not allow to carry out 
all fieldwork in 1-2 days as in Lake Garda. Therefore, the 
fieldwork was performed in several stages: “deep” water 
sampling with the WetLabs instrumentation package and 
water sampling was carried out on September 2, 2017 
(four stations), benthic habitat mapping with drop video 
(fragments shown in Fig. 4) was carried out on September 
15 (35 samples) and very shallow water depth and benthic 
habitat registration was carried out on September 13 by 
walking in shallow water (26 sampling points). The best 
Sentinel-2 images closest to the in situ sampling dates 
were available from June 4 and July 7, 2017 and they 
were Sentinel-2A images. 

Fig. 2. Sampling stations of Lake Garda test site. Shown with 
blue square were optically deep and only the water column was 
characterized. The region indicated with the red square was 
dominated by macrophytes, the region shown with yellow 
square was dominated by sandy bottom and the region indicated 
with green square indicates the area dominated by macroalgae. 
The stations indicated with X where optically shallow waters 
with mixed (bare substrate, macrophytes and macroalgae) 
bottom type.

Fig. 3. Study site in the Gulf of Finland – Aegna Island and the tip of Viimsi Peninsula. The fragment of Sentinel-2 image with the 
study area is shown in the red box on the map. Sampling stations are shown with red and blue dots. The stations indicated with blue 
represent points where optical water properties were measured.
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Remote sensing methods 

Image Data Analysis (IDA by Numerical Optics, 
https://www.numopt.com/) software package was used for 
image processing and visualization (Hedley et al., 2018). 
IDA allows to perform several image pre-processing steps 
(atmospheric correction, glint removal) and allows to re-
trieve water depth, benthic habitats and optical water 
properties using the adaptive lookup table (ALUT) ap-
proach (Hedley et al., 2009, 2012, 2018).  

The first step in the image pre-processing was sun glint 
removal. The deglint tool in IDA applies an image-based 
water surface sun-glint correction according to the methods 
described in Hedley et al. (2005) and Kay et al. (2009). The 
basis of the method is that an image band in the near infrared 
(NIR) or short wave infra-red (SWIR) is used to quantify 
the glint proportion in each pixel, which can then be re-
moved from the bands in other wavelengths. The tool pro-
vides various options that can apply to the different variants 
of the methods described in Kay et al. (2009). The glint re-
moval method in IDA is entirely image-based and does not 
require metadata on the sea state or solar-view geometry.  

Bathymetry mapping along with benthic habitat estima-
tions is the next step in image processing. The required input 
for estimating bathymetry is an image of the bottom of at-
mosphere (BOA) remote sensing reflectance, being the ratio 
of water-leaving radiance to the irradiance on top of the 
water surface. The Bathy tool in IDA estimates bathymetry 
from image data using a model inversion method. The meth-
ods implemented are very similar to those published by 
Hedley et al. (2009, 2012, 2018). The basis of the optimiza-
tion method is a forward model of above-water spectral re-
mote sensing reflectance) based on parameters of the water 
column and bottom substrates reflectance. Since model in-
version methods work with water-leaving reflectance as a 
radiometric quantity, accurate atmospheric correction is es-

sential and has a significant impact on the bathymetry results 
(Goodman et al., 2008). IDA software package uses deep 
water calibration (DWC) approach (Hedley et al., 2018). 
DWC atmospheric correction is based on a set of look-up-
tables for atmospheric reflectance and transmission, includ-
ing a maritime 99% relative humidity aerosol model as 
described in (Antoine and Morel, 1999). The look-up-tables 
are generated by libRadtran (Emde et al., 2015) and are pa-
rameterized on solar-view geometry, with the only two free 
parameters being aerosol optical thickness, τ (550) ranging 
between 0 and 0.3, and wind speed, u10, ranging between 0 
ms-1 and 10 ms-1 (conditions of the sea surface state). The 
main effect of these two parameters is to notionally con-
tribute to a spatially homogenous component of the atmos-
phere and indirect sea-surface reflectance, i.e., sky 
reflectance (Hedley et al., 2018). Atmospheric correction 
estimates a value for the aerosol optical thickness and a 
value for wind speed to be applied over the whole image 
area. This estimation is based on a set of deep-water areas 
selected by the user. The required input for estimating ba-
thymetry is an image of the bottom of atmosphere (BOA) 
remote sensing reflectance, being the ratio of water-leaving 
radiance to the irradiance on top of the water surface. The 
assumption of the underlying models is that the input data 
must have been atmospherically corrected and any compo-
nent of reflected light (sun or sky glint) from the upper side 
of the air-water interface has been removed.  

To estimate the bathymetry and water optical properties, 
model needs to know the range of possible bottom re-
flectance. In general, the bottom reflectance would not be 
expected to be the same over the whole area to be analysed, 
dark patches of macroalgae (seaweeds) or corals sur-
rounded by brighter sand are clear examples of this. Within 
a remote sensing image pixel (10 m x 10 m), there may be 
a mixture of bottom types in any proportion. The main 
method for handling bottom reflectance in the Bathy tool 

Fig. 4. Frames from videos made during fieldwork in Viimsi test site on 15 September 2017. Green filamentous algae Cladophora 
glomerata on the left and brown macroalgae Fucus vesiculosus on the right image.
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is to specify a set of bottom types, each with a specific spec-
tral reflectance, referred to as ‘endmembers’. In this study, 
we used our own spectral library that consists of average 
spectra of every possible bottom type (red-, green-, brown 
macro-algae, seagrasses and other higher plants, bare sub-
strate, deep water) present in both study areas. The bottom 
reflectance in the model can then take the value of a ‘linear 
mix’ of any pair of endmembers in the set; this specifies the 
range of possible reflectance encompassed by the model. 
For bathymetry assessment, methodology, where a 3 by 3 
pixels window was used to assess the water depth has been 
chosen; 3 by 3 pixels represent that the average value of 9 
surrounding pixels has been calculated and extrapolated to 
all 9 pixels in question. 

A confusion matrix was prepared to assess the results 
of classification, comparing the results on a class-by-class 
basis A confusion matrix is a table that allows visualizing 
the performance of classification by comparing the pre-
dicted value of the target variable, in our case pixels, with 
its actual value and gives out standard accuracy indicators 
(User’s accuracy, Producer’s accuracy and overall accu-
racy). User’s accuracy is computed by dividing the number 
of correctly classified pixels in each category by the total 
number of pixels that were classified in that category (the 
row total) and it represents the probability that a pixel clas-
sified into a given category actually represents that category 
on the ground. Producer’s accuracy is a result of dividing 
the number of correctly classified pixels in each category 
(on the major diagonal) by the number of reference pixels 
“known” to be of that category (the column total) and the 
value represents how well reference pixels of the ground 
cover type are classified. Overall accuracy is computed by 
dividing the total number of correctly classified pixels (i.e., 
the sum of the elements along the major diagonal) by the 
total number of reference pixels (Congalton, 1991). Also, 
the coefficient of determination (R2) was stated. 

 
 

RESULTS AND DISCUSSION 

Optical water properties 

Concentrations of optically active substances meas-
ured in both test sites are given in the Tab. 1. It is seen 

that the CDOM, TSM and Chlorophyll-a concentrations 
in all sampling stations were low or very low compared 
to Viimsi test site and higher than those measured in the 
oceanic waters (Morel et al., 2010; Dutkiewicz et al., 
2019). Low absorption and backscattering coefficients 
(Fig. 5) also confirm that from optical point of view, Lake 
Garda is an intermediate waterbody between the open 
ocean and the Baltic Sea. CDOM concentration in the Vi-
imsi study area was typical to open parts of the Baltic Sea 
as there are no major rivers near the study site that would 
contribute large amount of CDOM. On the other hand, 
TSM concentrations were relatively high. This is probably 
due to sediments re-suspension, as the shallow water areas 
in the Viimsi study site are relatively exposed to winds 
from different directions. Chlorophyll-a concentrations 
were typical for cyanobacteria season and exceeded the 
national monitoring threshold of a bloom in the Baltic Sea 
(5 mg m-3)” (Estonian Legislation, Water Act; https:// 
www.riigiteataja.ee/en/eli/512012017001/consolide). Re-
flectance spectra were measured in each sampling station 
in order to be able to check performance of atmospheric 
correction of Sentinel-2 imagery. Average reflectances are 
shown in Fig. 6. Reflectance spectra of the macroalgae 
and plant specimens were measured with Ramses on 
board the boat. Examples are shown in Fig. 7. 

Image processing can be done with and without glint 
removal. Whether to apply the deglint procedure depends 
on the image quality. Quite often an image that seems to be 
nearly perfect at the first glance is actually badly glint con-
taminated after a more detailed inspection. It was clear from 
visual inspection that large parts of the Lake Garda Sen-
tinel-2 image were contaminated with glint, a condition that 
is rather frequent during summer for the lake. Therefore, 
the glint removal procedure available in the IDA software 
was used to improve the image quality. The images before 
and after glint correction are shown in Fig. 8.  

 
Bathymetry mapping 

Altogether, 53 in situ measured depth points from a 
depth range of 0 to 7 meters were collected from the two 
study areas – 12 from Lake Garda and 41 from Viimsi. 
Retrieved bathymetry maps are shown in Fig. 9 and in the 

Tab. 1. Concentrations of optically active substances measured in Lake Garda and Viimsi during the field campaigns. 

Water quality (all stations)                             aCDOM (440) (m–1)                      TSM (g m–3)                   Chl-a (mg m–3) 

Average (Lake Garda)                                                    0.05                                           0.99                                    1.11 
Average (Viimsi)                                                            0.56                                            9.1                                     6.82 
Max (Lake Garda)                                                          0.11                                           1.73                                    1.91 
Max (Viimsi)                                                                  0.59                                           10.7                                    8.63 
Min (Lake Garda)                                                           0.02                                           0.45                                    0.46 
Min (Viimsi)                                                                   0.53                                            8.3                                     5.14
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case of the Viimsi test site the depths measured in the field 
work varied from 0.5 m to 4.9 m and retrieved values 
from remote sensing images varied from 0.47 m to 4.75 
m, while the coefficient of determination (R2) was 0.95. 
In Lake Garda, measured water depth values from field-
work varied from 1.2 m to 7 m and image-derived water 
depth was from 1.4 m to 6.6 m, while R2 was 0.95. 

Sentinel-2 has high revisit time. Therefore, it should 
be reasonable to process several images and use their av-
erage as a final product, especially if the images are ac-
quired with small time interval during which the benthic 
habitats and bathymetry should remain the same. How-
ever, in our case cloud-free images with minimal glint ef-
fect were two weeks apart in Lake Garda and more than 

Fig. 5. Total absorption (left) and backscattering coefficients (right) measured in Lake Garda (top) and Viimsi (bottom).

Fig. 6. Reflectance spectra measured in different sampling 
stations in Lake Garda.

Fig. 7. Reflectance spectra of different macrophytes and 
macroalgae taken out from Lake Garda.
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a month apart in Viimsi. Therefore, it was decided to re-
trieve bathymetry and habitat information from each 
image separately (Fig. 10). 

The chosen study methodology, where 3 by 3 pixels 
window was used to assess the water depth, enabled us 
to produce reliable bathymetry maps with IDA in opti-
cally complex Baltic Sea and a subalpine lake. In both 
test sites the R2 was 0.95 which shows excellent concur-
rence between image derived water depth and measured 
water depth. 

 
Benthic habitat mapping 

Altogether, 42 in situ points with bottom habitat data 
were collected from the two study areas –10 from Lake 
Garda and 32 from Viimsi. 

We have shown in our previous studies (Kutser et al., 

2006, 2006a, 2006b; Vahtmäe et al., 2006) that separating 
brown and red macroalgae from each other is possible 
only with hyperspectral sensors and in very shallow (less 
than 3 m) water. However, it can be seen in Tab. 2, that 
there are no red algae in the study sites (they usually grow 
in deeper areas). The classification results did not show 
presence of red algae either. The same studies show that 
it is very difficult or nearly impossible to separate green 
macroalgae, seagrasses and other higher-order plants from 
each other, based on their optical signatures (especially 
when multispectral sensors are used). In the Garda test 
sites there were two points and in Viimsi test site there 
were three points where higher order vegetation (HOV) 
was found, but user accuracy was 0% from both Lake 
Garda images and from 04.06.2017 Sentinel-2 image and 
25% from 07.07.2017 Viimsi image and in every case, 
HOV was classified wrong. It was classified as green 

Fig. 8. The effect of applying glint removal procedure in IDA software on the Lake Garda image from 23.06.2017 (A, original; B, 
deglinted).

Fig. 9. Retrieved bathymetry maps from Lake Garda test site on the left and Viimsi test site on the right. Land and deeper depths have 
been masked out by visual inspection and shown in black.
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algae, so it was decided to combine HOV and green algae 
classes. In Lake Garda, no brown algae were detected dur-
ing the in situ campaign nor it was presented in the clas-
sification result, so this class has been removed from the 
classifying accuracy table. 

In situ data was classified into three main classes – 
sand, areas dominated by green algae cover, and areas 
covered by brown algae. It has to be kept in mind that the 
“bare” substrate, in this case, sand, is actually not a clean 
substrate. First of all, every object in sea or lake water is 
always overgrown with some marine organisms. Even a 
single sand particle is always covered with a film of mi-
croscopic algae. Moreover, the in situ data was classified 
as sand if vegetation cover was less than 40%. On the 
other hand, 30% vegetation cover on the substrate may 
spectrally look like vegetation not as bare substrate. This 
explains the misclassifications between the sand and 
green algae classes. 

In both test sites, classification accuracy shows the 
best results in classifying green algae. In both cases, there 
was one measuring point where green algae were classi-
fied as sand. Measured water depths in these measuring 
points were 4.1 m in Viimsi and 2.7 m in Lake Garda. 
Also, there are a few points where sand is classified as 
green algae. In Viimsi test site it can be explained by the 
fact that at the image acquisition time (07.07.2017) there 
was visible cyanobacteria bloom and due to that, water 
was green and sand appeared through the water column 

like green algae. It has been shown in our earlier studies 
(Vahtmäe et al., 2006), that algal blooms in the water col-
umn and benthic vegetations may look spectrally nearly 
identical. As mentioned before, there was two months gap 
between field campaign and usable Sentinel-2 image in 
Viimsi test area due to the cloud coverage, so there was 
no other option but to use this image with visible bloom 
in the benthic mapping process. In Lake Garda same mix 
ups with green algae and sand happened. Lake Garda is 
an intermediate waterbody and if there is large concentra-
tion of phytoplankton, water may seem greenish and sand 
through the water column may seem more like green algae 
reflectance than to bare sand reflectance. 

It has been shown in earlier studies (Kutser et al., 
2002, 2006, 2020), that the physics-based model inver-
sion methods are very sensitive to the quality of input 
data. Consequently, atmospheric correction and other 
pre-processing steps must ensure that the reflectance is 
perfect before analytical methods are applied to process 
the imagery. Otherwise, the physics-based methods tend 
to fail.  

Despite of very different water quality conditions of 
the two chosen test sites, high-accuracy bathymetry maps 
were obtained with IDA software from Sentinel 2 im-
agery, upon removal of glint and corrections of atmos-
pheric effects. It has to be noted, that the in situ data is 
based on dominant algae/plant cover within a 1 m2 area. 
Sentinel-2 pixel is 100 m2 and vegetation is very patchy 

Fig. 10. Scatterplot of satellite derived depth vs in situ depth in Lake Garda (a) and Viimsi (b) test sites. Coefficient of determination 
of Lake Garda test site was R2= 0.97 (23.06.2017), R2=0.96 (08.07.2017) and of Viimsi test site R2= 0.95 (04.06.2017), R2=0.96 
(07.07.2017).
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in both test sites. There are no extensive seagrass beds or 
kelp forests that have “monospecies” cover within 10x10 
m pixels. Thus, the spatial heterogeneity also impacts the 
bottom classification results. We planned to study these 
effects by flying our airborne imaging spectrometer 
HySpex simultaneously with Sentinel-2 overflight in the 
Viimsi test site. However, as mentioned before, weather 
conditions were not favourable for airborne campaigns 
(strong wind, variable cloud cover). From water manage-
ment point of view, it is desirable to map benthic habitats 
during the maximum cover. However, due to the cloud 
cover, there was a significant gap between Sentinel-2 
image acquisitions in the Viimsi test site and we may have 

not captured the absolute maximum cover. This does not 
diminish the value of the results in terms of demonstrating 
remote sensing capabilities. 

In the Baltic Sea, sand is often darker than the bright 
white coral sand. Therefore, it is harder to distinguish 
sandy areas from vegetated areas or deep water than it is 
in tropical oceanic waters. Thus, not only the higher com-
plexity of water column properties but also the higher 
similarity of benthic types make shallow water remote 
sensing in the studied waterbodies harder than in clear 
oceanic waters. This is also a reason why it is necessary 
to use regional endmember spectra rather than the bottom 
spectra that are included in the IDA. 

Tab. 2. Classification accuracy from Sentinel-2 images. Bold values indicate the number of correctly classified pixels. 

Ground reference 

Classification accuracy 

Viimsi 04.06.2017                                           Sand                     Green algae               Brown algae                    Total                User accuracy(%) 

Sand                                                                    3                                  2                                  0                                  5                                 60 
Green algae                                                         0                                 10                                 0                                 10                               100 
Brown algae                                                        1                                  3                                  7                                 11                             63.64 
Total                                                                    4                                 15                                 7                                 26                                   
Producer accuracy (%)                                       75                             66.67                            100                                  

Overall accuracy (%) 76.92 
Ground reference 

Classification accuracy 

Viimsi 07.07.2017                                           Sand                     Green algae               Brown algae                    Total               User accuracy (%) 

Sand                                                                    2                                  3                                  0                                  5                                 40 
Green algae                                                         1                                  9                                  0                                 10                                90 
Brown algae                                                        1                                  2                                  8                                 11                             72.73 
Total                                                                    4                                 14                                 8                                 26                                   
Producer accuracy (%)                                       50                             64.29                            100                                  

Overall accuracy (%) 73.08 
Ground reference 

Classification accuracy 

Lake Garda 23.06.2017                                 Sand                     Green algae                     Total               User accuracy (%) 

Sand                                                                    2                                  1                                  3                              66.67 
Green algae                                                         0                                  7                                  7                                100 
Total                                                                    2                                  8                                 10                                   
Producer accuracy (%)                                      100                            87.50                                                                   

Overall accuracy (%) 90.00 
Ground reference 

Classification accuracy 

Lake Garda 08.07.2017                                 Sand                     Green algae                     Total               User accuracy (%) 

Sand                                                                    1                                  2                                  3                              33.33 
Green algae                                                         0                                  7                                  7                                100 
Total                                                                    1                                  9                                 10                                   
Producer accuracy (%)                                      100                            77.78                                                                   

Overall accuracy (%) 80.00
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CONCLUSIONS 

Sentinel-2 data quality and availability have increased 
the opportunities to monitor hard to reach coastal areas 
that have both ecological and commercial value. Sentinel-
2 mission, with Sentinel-2A and Sentinel-2B registering 
data at 10 m of spatial resolution and a nominal revisit 
time of 5 days may not guarantee that cloud-free images 
can be received in less than a week, particularly in Baltic 
Sea area, where a high percentage of cloud coverage has 
often compromised the results obtained. 

It may be concluded that Sentinel-2 is suitable for ba-
thymetry and habitat mapping on optically complex in-
land and coastal waters. The depths at which this can be 
done are shallower than in clear oceanic water, but the re-
sults are still very valuable for coastal managers, moni-
toring agencies, researchers and in other fields. 

Bathymetry mapping in waters less than 4 m in the 
Baltic Sea and less than 7 m in Lake Garda gave accurate 
results with R2 being above 0.93 in all four Sentinel-2 im-
ages from where water depth was estimated. Bottom type 
mapping accuracy was in all cases over 73%, which is con-
sidered to be good, but due to the limited number of sam-
pling points in both test sites, further studies are worthwhile. 

In the context of climate change and with a scarcity 
of the quantity of water in the river and lakes, the bathym-
etry information associated with the water level is of great 
importance not only for an ecological point of view but 
for navigation management, the indication of the areas 
that may, in the event of a decrease in levels, be a potential 
danger for navigation is of fundamental importance, as 
well as information relating to the bathymetry and the 
coverage of the seabed in the areas in front of the ports. 
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