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INTRODUCTION

Lentic systems, i.e., freshwater lakes and ponds, are
a major feature of the Arctic and Subarctic landscape. It
is estimated that there are approximately 3.5 million
lakes and ponds within the Arctic circle (≥66.6°N) with
>40% located within the Canadian Arctic (Paltan et al.,
2015). The vast majority of these aquatic systems are
generally small (<10 ha) and shallow (<12 m in depth)
ponds (Hamilton et al., 2001; Rautio et al., 2011; Paltan
et al., 2015; Dranga et al., 2018), but they can also be
large and deep systems (e.g., Great Bear Lake in
Northwest Territories at 114,717 km2 and max depth 446
m (Vincent et al., 2012). Arctic lakes and ponds are
exposed to harsh climatic conditions, i.e., low
temperatures, low precipitation volume, and seasonally
low inputs of solar radiation, which limit the
development of vegetation and the chemical weathering

of soils within lake catchments. Most precipitation occurs
in the form of snow or ice (Maxwell, 1981) and during
the melting period brings large amounts of water and
other components (particulates and dissolved
compounds) into these (often isolated) systems, which
results in dilute systems that are further modified by
terrestrial processes. This runoff-dominated region
results in lakes and ponds with hydrochemical
characteristics that are unique to the Arctic (Hamilton et
al., 2001; Wetzel, 2001; Lamoureux and Gilbert, 2004).
These systems provide vital habitat for many biological
communities. In addition, they provide resources
(hunting, fishing, and drinking water) for Indigenous
communities. Moreover, it is well established that aquatic
systems, such as lakes and ponds, are effective indicators
or ‘sentinels of change’, as they reflect process changes
at the catchment scale, and can provide spatial and
temporal information on the impacts of anthropogenic
activity (Adrian et al., 2009). Previous studies have
shown (anthropogenic driven) local (wastewater
discharge, Schindler et al.,1974; road dust, Gunter, 2017;
industrial development, Moiseenko et al., 2009), regional
(atmospheric deposition of contaminants, Outridge et al.,
2001; nitrogen deposition, Wolfe et al., 2006), and global
(Smith et al., 2005; Michelutti et al., 2007b; Adams et
al., 2010; Thienpont et al., 2013) scale impacts on the
physical and chemical characteristics of Arctic lakes.
Although there have been many limnological studies in
the Canadian Arctic (Pienitz et al., 1997a, 1997b;
Rühland et al., 1998; Hamilton et al., 2011; Michelutti
et al., 2002a, 2002b; Lim and Douglas, 2003; Antoniades
et al., 2003a, 2003b; Mallory et al., 2006; Westover et
al., 2009; Côté et al., 2010; Stewart and Lamoureux,
2011; Medeiros et al., 2012; Robert et al., 2017), few
studies have integrated existing observations to provide
baseline limnological data required for regional
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255Characteristics of Canadian Arctic lakes and ponds

assessments (Hamilton et al., 2010; Dranga et al., 2018;
Liang and Aherne, 2019). 

The objective of this study was to provide a broad
assessment of the physical and chemical characteristics
of lakes and ponds among the different geographic,
geological, and ecological regions across the Canadian
Arctic (for 1300 sites), and to evaluate the drivers of water
chemistry. This was carried out by collating published
hydrochemical data for 1300 sites from 33 peer-reviewed
articles. We utilized a similar approach to that of Hamilton
et al. (2010) and Dranga et al. (2018); however, we
limited our geographic scope to the Canadian region in
the Arctic Monitoring & Assessment Programme
circumpolar boundary (Stonehouse, 1989; AMAP, 1998)
and included recent hydrochemical data from Liang and
Aherne (2019). In general, the study sites were primarily
located in remote background regions with limited direct
anthropogenic disturbance, as such they are potentially
sentinels of climate change, land-use disturbance and
anthropogenic pollutant deposition (e.g., trace metals, and
acidic and nutrient deposition).

METHODS

Study area

The Canadian Arctic (Canadian territory within the
boundary of the Arctic Monitoring and Assessment
Program; Stonehouse, 1989) is approximately 4.0 ×106

km2 (AMAP, 1998) covering all areas north of 60°N. This
includes the Canadian Arctic Archipelago, the territory of
Yukon, Northwest Territories and Nunavut, and parts of
northern Quebec and Labrador (Fig. 1). Much of the
Canadian Arctic Archipelago region rests upon the Arctic
Platform, which consists of sedimentary geology
comprised of shale, siltstone, sandstone, limestone and
dolomite (Clague et al., 1989; Dawes and Christie, 1991;
Fig. 2 Top). The eastern perimeter (eastern Ellesmere,
eastern Devon, Baffin Is., eastern Northwest Territories,
Nunavut, northern Quebec, and northern Labrador) rests
upon Precambrian (Canadian) Shield, which consist of
igneous crystalline and metamorphic rock, that includes
greenstone, gabbro, gneisses, granitic, and volcanic rocks

Fig. 1. Names of islands and regions within the study area; the AMAP boundary is depicted as a red line (taken from AMAP, 1998),
while study sites are depicted as red dots. 
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256 T. Liang and J. Aherne

Fig. 2. Location of all study sites (red dots) superimposed on bedrock geology (top) from Harrison et al. (2011) and ecoregion type
(bottom) from CEC (1997).
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(Clague et al., 1989; Dawes and Christie, 1991; Harris et
al., 2012; Fig. 2 Top). In general, arctic soils are poorly
developed and greatly influenced by cryogenic processes
(the formation of ice in soils), such as freeze-thaw, ice
build-up, thermal cracking, and frost heave, which leads
to poorly defined soil horizons (Tarnocai, 2009). Soil
chemical properties are greatly influenced by their parent
material, although soil nutrients (N, P, K) are generally
bound up by surface organics (Tarnocai, 2009). Peat bogs
and organic soils are common among depressions in the
southern Arctic landscape and are the result of
accumulated plant growth (Tarnocai, 2009). The study
area encompassed four ecoregions (CEC, 1997): Arctic
Cordillera (AC), Tundra (TU), Taiga (TA), and
Northwestern Forested (NWF) mountains (Fig. 2
Bottom), which are geographical units with characteristic
flora, fauna and ecosystems (CEC, 1997). The AC
consists of the mountainous regions of the eastern Arctic,
while the TU covers most of the Canadian Arctic
Archipelago (CEC, 1997). The TA ecoregion is south of
the TU and encompasses the tree line, while the NWF
mostly lies in the southwestern portion of the study area
(CEC, 1997). Low temperatures and precipitation, long
winters, short summers, and extreme seasonal light
exposure (24 hrs of darkness in the winter and light during
the summer) are common climate characteristics of the
Arctic. Climatic conditions vary among regions
(Maxwell, 1981), with colder temperatures occurring in
the north (–28 to –35°C in January and 0–3°C in July),
compared with the south (–20 to –25°C in the winter and
5 to 8°C in July). Similarly, precipitation ranges from
<100 mm in the north, to 200–500 mm annually in the
south, with much of the precipitation (20–50%) falling as
snow or ice (Maxwell, 1981). 

Arctic water chemistry dataset

Published articles (n=28), reports (n=2), and graduate
theses (n=3) containing water chemistry observations for
Arctic lakes and ponds were compiled into a single
dataset; the initial database had more than 1600
observations, including overlapping sites. Studies that
presented the hydrochemistry of streams and rivers
(Babaluk et al., 1999, 2009) were removed as the focus
was on lakes and ponds. In addition, some studies
presented sites below the AMAP boundary (60°N), these
were also removed. The most recent sampling period was
chosen to represent sites with multiple observation and
duplicate datasets were removed (i.e., same datapoints
were reported in multiple studies). After accounting for
overlaps and duplicates, the final dataset was composed
of 1300 unique sites (Tab. 1; Fig. 1). Site selection in most
studies in the Canadian Arctic is limited by logistical and
climatic conditions; as such, sites were primarily sampled
during the ice-free season of July and August; details on

sampling and analytical methods can be found in their
corresponding papers (Tab. 1). In general, most studies
followed analytical methods as outlined by Environment
and Climate Change Canada (ECCC, 1994a, b). A large
portion of sites were sampled in the years 1993 (n=185),
2003 (n=101), and 2016 (n=81) (Tab. 3). However, some
studies only reported a year range for their sampling date,
i.e., 1989–2002 (Bouchard et al., 2004) and 2006–2010
(Medeiros et al., 2012), as such, the exact sampling dates
were unknown. This accounted for ~10% (n=176) of
sites. The earliest observation reported was 1979 on
Ellesmere Is. (Hamilton et al., 2001), whereas the most

Tab. 1. List of published sources with water chemistry data and
their respective surface water site count.

no.        Source                                                                 Site count

1            Antoniades et al. (2003a)                                          66
2            Antoniades et al. (2003b)                                          25
3            Babaluk et al. (1999)                                                  8
4            Babaluk et al. (2009)                                                 14
5            Bouchard et al. (2004)                                               48
6            Brimble et al. (2009)                                                 26
7            Bunbury and Gajewski (2009)                                    9
8            Bunbury and Gajewski (2005)                                   33
9            Côte et al. (2010)                                                       27
10          Delvin MSc 2010)                                                     20
11          Hadley et al. (2013)                                                   40
12          Hadley MSc 2007)                                                      6
13          Hamilton et al. (2001)                                              181
14          Keatley et al. (2007)                                                  55
15          Keatley Ph.D (2007)                                                  46
16          Liang and Aherne (2019)                                          100
17          Lim and Douglas (2003                                             23
18          Lim et al. (2005)                                                        45
19          Lim et al. (2001)                                                         9
20          Mallory et al. (2006)                                                  32
21          Medeiros et al. (2012)                                               93
22          Michelutti et al. (2002a)                                            34
23          Michelutti et al. (2002b)                                            38
24          Michelutti et al. (2007)                                              33
25          Michelutti et al. (2010)                                               2
26          Moser et al. (1993)                                                     8
27          Pienitz et al. (1997a)                                                  59
28          Pienitz et al. (1997b)                                                 24
29          Ruhland and Smol (1998)                                          70
30          Ruhland et al. (2003)                                                 56
31          Stewart and Lamoureux (2011)                                  2
32          Westover et al. (2009)                                               61
33          Wilson and Gajewski (2002)                                      7
Total                                                                                      1300
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recent observations were from 2016 on Baffin Is. (Liang
and Aherne, 2019; Tab. 3).

The initial database had more than 90 physical and
chemical variables. Observations below detection,
primarily trace element concentrations, were assigned a
random number between zero and the associated detection
limit. Total nitrogen (TN) concentration was calculated as
the sum of total kjeldahl nitrogen (TKN: organic nitrogen
+ ammonia), nitrates (NO3), and nitrites (NO2), when data
for TKN, NO3, and NO2 were available but few
observations for nitrate (NO3; n=74) were reported. In
addition, some parameters were reported as filtered and
unfiltered. An average value was calculated between
filtered and unfiltered samples, and these variables were
denoted with an asterisk, i.e., NH3*, TP*, TKN*, TN*,
NO3*, NO2*, etc. Other variables (i.e., depth, TSS, Chla-
a, Cu, Ni, Se, U, etc.) are reported in the supporting
material (Supporting Material T1). 

Physical (location, elevation, depth, area) and
chemical data for each site were extracted and unified into
a common data structure. Missing values for elevation (m)
were determined using Google Maps’ Elevation

Application Programming Interface. Distance to coast
(km) was calculated using the Grass GIS 7 plugin in QGIS
and a coastal shapefile of Canada. Geological data were
obtained from Harrison et al. (2012), while ecoregion
information was obtained from CEC (1997). In general,
individual datasets did not have similar unit systems, i.e.,
coordinate systems (decimal degrees vs degree minute
seconds), concentration (µg L–1 vs mg L–1), or a consistent
suite of chemical parameters. Physical and chemical
parameters (n=26) with an observation count ≥700 (>50%
of 1300 sites) were selected for further analysis, these
were: Latitude, Longitude, elevation, distance to coast,
lake area, pH, conductivity, Ca, K, Mg, Na, Cl, SO4, SiO2,
DOC, POC, DIC, NH3, TKN, TN, TP, Al, Ba, Fe, Mn, and
Sr. See Supporting Material for figures depicting the
location of sites used for the analysis of cations (Ca, Mg,
Na, K; Supporting Material F4), anions (Cl, SO4;
Supporting Material F5), nutrients (TP, TN, DOC;
Supporting Material F6), and trace metals (Al, Fe, Mn;
Supporting Material F7). Sites were included in the
analysis if one or more ion/nutrient/trace metal species
were available. 

Tab. 2. Descriptive statistics for Arctic lakes and ponds (n ≤1300) for 26 variables including unit, count, mean, percent coefficient of
variation (%CV), minimum, maximum, and percentile (5th and 9th) values.

                                                                                                                                                                                                  Percentile

Variable                                      Symbol       Unit                         Count       Mean       %CV         Min          Max       Median        5th            95th

Elevation                                        Elev         m asl                          1300          198          216.9            0            1387          134            7.9            657
Distance to coast                           DistC          km                           1300          69.4         780.2         0.01           750           13.5          0.56           395
Area                                               Area           ha                             877          1088        7594.1           0          506300        6.38          0.03           553
pH                                                   pH                                            1253          6.01         0.003         10.9           3.4            7.9            8.7           6.31
Conductivity                                  Cond      µS·cm–1                                       1235          186          193.2         1.46         13200         97.4          9.61           554
Calcium                                           Ca         mg·L–1                                         1253          20.5         257.3            0             451           14.6          0.67          52.4
Potassium                                         K          mg·L–1                                         1208          1.61         246.5            0             109           0.57          0.11          5.97
Magnesium                                     Mg         mg·L–1                                         1144          8.24         195.1         0.01           273            3.7           0.32          28.2
Sodium                                            Na         mg·L–1                                         1255          12.3         313.1         0.01          1650          1.65           0.3           35.1
Chloride                                           Cl          mg·L–1                                         1251          16.2         357.5            0            2850          2.05           0.3           44.5
Sulphate                                          SO4              mg·L–1                                         1251          28.7         405.6         0.03          2100           3.1            0.4            117
Silica                                              SiO2             mg·L–1                                          984           1.04         207.8            0             13.9          0.51          0.07           3.7
Dissolve organic carbon                DOC       mg·L–1                                         1130          5.73         140.1         0.02          69.9           3.5           0.69          18.0
Dissolve inorganic carbon              DIC        mg·L–1                                         1032          13.8           192           0.06           134           10.9           0.7           36.5
Particulate organic carbon             POC       mg·L–1                                          702           0.56          87.6          0.01          9.89          0.41          0.12          1.34
Ammonia                                      NH3*       µg·L–1                                           744           25.1         175.4         0.06           459            12              2             83.9
Total Kjeldahl nitrogen                 TKN*       µg·L–1                                           802           376          192.4         0.06          2760          263          49.05         1100
Total nitrogen                                 TN*        µg·L–1                                           864           424          105.5          7.4           5324          312           71.8          1068
Total phosphorous                          TP*        µg·L–1                                         1247         11.14        121.8            0             761           7.05          1.35          28.1
Aluminum                                       Al          µg·L–1                                           872           113          314.3         0.02         11200          17            2.76           328
Barium                                             Ba          µg·L–1                                           814           14.3         173.4         0.15           272           6.45             1              54
Iron                                                  Fe          µg·L–1                                         1015          199          405.3         0.03         11500          48              3             765
Manganese                                      Mn         µg·L–1                                           875           529         1244.6           0           52600          5.3           0.46          2490
Strontium                                         Sr          µg·L–1                                           819            72           223.1         0.24          3150          23.9          3.09           245
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An ion balance check was used to assess the quality
of water chemistry data following the International
Cooperative Programme for assessment and monitoring
of the effects of air pollution on rivers and lakes (ICP
Waters, 2010). Only 224 sites (17.2%) had complete
observations of Ca, Mg, Na, K, ALK, Cl, NO3, SO4, and
pH, to perform the ion balance (see Supporting Material
F 2). Only 13 of the 224 sites (6.27%) had differences
>10% and were deemed unacceptable.

The Na and Cl ratio can be used to assess the
dominance of inputs from marine aerosols, where 0.86
is the (µeq L–1) ratio for seawater (Möller, 1990). A
Na:Cl ratio >0.86 suggests that surface waters may be
influenced by terrestrial inputs of Na from weathering
of cation exchange (Möller, 1990). A lower Na:Cl ratio
(<0.86) suggests inputs of terrestrial Cl or catchment
retention of Na (Möller, 1990). The TN:TP (µeq L–1)
ratio was used to assess if an aquatic system was either
phosphorus (P) or nitrogen (N) limited, where ratios of
TN:TP<14 (Downing and McCauley, 1992) indicate N-
limited, and ratios of TN:TP>17 (Sakamoto, 1966)
indicate P-limited sites.

Statistics
All statistical analysis was preformed using R (version

3.3.2). Variables were tested for normality (lilliefor test
from the package nortest), homogeneity of variance
(Levene’s test from the package car), and linearity
(quantile-quantile plots from the package stats) prior to
statistical analysis. However, due to the consistent non-
normal distribution among variables (found by testing for
normality, homogeneity of variance, and linearity), non-
parametric statistical tests were used. Percent coefficient
of variation (%CV) was calculated following Canchola et
al. (2017) and was performed on log transformed data.
Correlation between physical and chemical variables was
determined using the spearman’s rank correlation (rs)
from the package Hmisc. To determine if there were
statistically different concentrations between regions
(bedrock geology, ecoregion, and geographical region),
the Kruskal–Wallis rank sum test (from the package stats)
was used with a Dunn’s post hoc test (Bonferroni
adjustment; from the package dunn.test). Principal
Component Analysis (PCA) was performed with log
transformed variables, with the R packages ggbiplot and

Tab. 3. Summary of sampling sites per region with sampling year.

Region                                                                Site count                    Years sampled

Axel Heiberg Is.                                                        47                          1995/1996/1998
Baffin Is.                                                                  132                         1980/1984/1985/1993/2015/2016
Banks Is.                                                                    45                          2000
Bathurst Is.                                                                67                          1992/1994/1997/1998/1999/2000/2001/2002/2005
Bylot Is.                                                                     47                          2005/2008
Coats Is.                                                                    10                          2016
Cornwallis Is.                                                            47                          1980/1992/1993
Crozier Is.                                                                   2                           2008
Devon Is.                                                                   66                          1980/1994/1996/2000/2004/2005/2006/2006/2007
Ellef Ringnes Is.                                                        25                          1996
Ellesmere Is.                                                             170                         1979/1989/1990/1992/1995/1996/1997/1998/1999/2001/2003/2007/2008
King William Is.                                                         4                           1982
Little Cornwallis Is.                                                   1                           1981
Melville Is.                                                                49                          1992/2003/2004
Mainland Northwest Territories                               153                         1990/1991/1993/2015
Mainland Nunavut                                                   190                         1982/1983/1991/1999/2004/2006/2007/2008/2009/2010
Prince Charles Is.                                                       5                           1985/2016
Prince of Wales Is.                                                     5                           1994/1995
Prince Patrick Is.                                                       35                          1999
Somerset Is.                                                               13                          1980/1989/1990/1991/1993/1994/1995/1996
Southampton Is.                                                        37                          1983/2001/2002
Victoria Is.                                                                 88                          1982/1997/2000/2004
Yukon                                                                        64                          1990/1996/2000/2002
Grand total                                                              1300                        Range: 1979–2016
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ggfortify to determine possible relationships, potential
drivers of hydrochemistry, and the variability within the
dataset. For the PCA, a subset of variables (Latitude,
Longitude, elevation (Elev), distance to coast (DistC),
area, pH, Cond, Ca, K, Mg, Na, SO4, Cl, DOC, DIC, TN,
TP, Al, Fe, and Mn) were included. These variables were
only available for 613 sites (see Supporting Information
F3), which excluded all sites situated in the NWF
ecoregion. Thus, PCA results only pertain to sites within
the AC, TU, and TA ecoregions. 

RESULTS

Water chemistry dataset 

A dataset of 1300 sites with 26 physical and chemical
parameters was used in this study (Tab. 2), for other
parameters (n = 59), e.g., NO2, TDN, As, etc., see
Supporting Material T1). Not all 1300 sites had
observations for all 26 chemical and physical parameters,
as such, summary observations reported as percentages
refer to the total observed count for the variables (shown
in Tab. 2). Only percentages reported for location,
elevation, distance to coast, geology, ecoregion, and
region of the Canadian Arctic are in reference to the 1300
sites. For example, 14.5% (n=127) of sites had an area
>100 ha, this means that for all sites with observations of
area (n=877; Tab. 2), 14.5% (n = 127) had a lake area
>100 ha. Similarly, 82.0% (n=1028) of sites had a pH >7
(1028 of total sites with observations for pH, i.e., 1253
sites; Tab. 2). 

Physical characteristics

Most sites were on mainland Nunavut (n=190),
Ellesmere Is. (n= 70), and mainland Northwest Territories
(n=153) (Fig. 1; Tab. 3). Islands with the least number of
sites were Little Cornwallis Is. (n=1; Hamilton et al.,
2001), Crozier Is. (n=2; Michelutti et al., 2010), and King
William Is. (n=4; Hamilton et al., 2010) (Fig. 1). The
study sites were primarily located on remote and
underdeveloped areas (Fig. 1). However, some sites were
located near to population centers (Bunbury and
Gajewski, 2002; Michelutti et al., 2007a; Hamilton et al.,
2010; Medeiros et al., 2012; Liang and Aherne, 2019),
research stations (Antoniades et al., 2003; Antoniades et
al., 2010; Stewart and Lamoureux, 2011), within National
Parks (Lim et al., 2005; Liang and Aherne, 2019; Côté et
al., 2010, Hadley et al., 2013; Keatley et al., 2007;
Hamilton et al., 2010), and along roadways (Moser et al.,
1993; Bunbury and Gajewski, 2002; Pienitz et al., 1997a).

Approximately 66.5% (n=864) of all sites were on
sedimentary (SED) geology, 26.4% (n=343) were on
igneous (IGN) geology, and 6.2% (n=80) on supracrustal
(SUP) geology (Fig. 2 Top; Tab. 4). Thirteen sites were

on unclassified (UNC) geology (1.0%; Fig. 2; Tab. 4) and
were located on Somerset (n=4), Bathurst Is. (n=1),
Yukon (n=4), Devon Is. (n=1), and Ellesmere Is. (n=3).
The UNC geology type consists primarily of metamorphic
rock of granite gneiss, tonalite gneiss, granodiorite,
paragneiss lithology (Harris et al., 2012). Within the four
ecoregions, most sites (84.8%, n=1102) were located
within the TU, which covers most of the Arctic
Archipelago, mainland Nunavut, northern section of
mainland Northwest Territories and Quebec (Fig. 2
Bottom; Tab. 5). This was followed by the TA at 9.1%
(n=118), NWF at 4.3% (n=56), and lastly, the AC
ecoregion at 1.8% (n=24). Although most sites were
situated within the SED geology and TU ecoregion types,
in general sites were spatially distributed across the entire
study area (see Supporting Material F4, F5, F6, and F7). 

Most sites were situated at low elevations (66.5%,
n=865, <200 m asl; Fig. 3 Top) and close to the coast
(72.5%, n=938, 0-50 km; Fig. 3 Middle), indicative of the
geographic distribution of lakes and ponds in the Arctic.
Using the available data for lake depth (only 680 sites
with this observation) and area (only 877 observations),
85.4% of sites (n=581; Fig. 3 Bottom) were classified as

Fig. 3. Frequency distribution (histogram) of site characteristics:
elevation (top), distance to coast (middle), and depth (bottom).
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shallow (≤10 m; Hamilton et al., 2001) , with only 31.6%
(n=215) further classified as ponds (≤ 2 m; Lim et al.,
2001), and 58.0% (n=509) as small (≤10 ha; Hamilton et
al., 2001).

Water pH and conductivity

Most sites (82.0%, n=1028) had pH >7 (Tab. 2), with
a median pH of 7.9 and a mean = 6.0 (n=253). By region,
the lowest median pH values were observed in: Bylot Is.
= 6.5, Ellef Ringnes Is. = 6.8, and Baffin Is. = 6.9, while
regions with the highest median pH values were
Cornwallis Is. = 8.6, Prince of Wales Is 8.4, and Yukon =
8.4 (Tab. 6). Median surface water pH values by geology
type were: IGN = 7.3, SED = 8.1, SUP = 8.1, and UNC =
8.1 (Tab. 4).

A significant positive correlation (P<0.01) was
observed between pH and Ca (rs = 0.61), Mg (rs = 0.59),
and DIC (rs = 0.64) (Fig. 4), which suggests that

underlying bedrock and soils with carbonate content
predominantly influence pH in Arctic surface waters.
Water pH was found to be significantly (P 0.001) different
between IGN and SED, and IGN and SUP geology (Fig.
5 Left middle; Tab. 7) and significantly different among
ecoregions; NWF and AC, NWF and TA, NWF and TU,
and TA and TU (Tab. 7). In addition, pH was found to be
highest for the NWF ecoregion (8.37; Tab. 5) and lowest
for the TA ecoregion (7.50).

Median conductivity was 97.4 µS cm–1 but it varied
widely from 1.46 to 13,200 µS cm–1 (CV = 263%; Tab.
2); although the majority of sites (75.5%, n=933) had
values below 200 µS cm–1. Median conductivity by region
was lowest for Bylot Is. = 15.9 µS cm–1, Northwest
Territories = 48.0 µS cm–1, and Baffin Is. = 50.8 µS cm–1,
while higher values were found for Yukon = 305 µS cm–

1, Ellef Ringnes Is. = 228 µS cm–1, and Southampton Is. =
222 µS cm–1 (Tab. 6). Among bedrock geology,

Tab. 4. Median (mean) values and site count for selected water chemistry variables and ratios by bedrock geology: sedimentary (SED),
igneous (IGN), supracrustal (SUP), and unclassified (UNC).

                                                                                                           geology

Variable         Unit                                                               ign                            SeD                            SUP                           UnC

Count                                                                                    343                              864                               80                                13
Elev                m asl                                                           178 (230)                    117 (163)                    365 (406)                    240 (383)
DistC                km                                                            19.3 (102)                  10.5 (54.5)                  101 (90.0)                  7.00 (72.7)
Area                  ha                                                             10.3 (335)                  4.25 (1508)                  30.9 (491)                  4.75 (9.11)
pH                                                                                    7.31 (7.32)                  8.06 (7.91)                  8.08 (7.74)                  8.06 (7.84)
Cond            µS·cm–1                                                                                            40.0 (66.8)                   132 (232)                   98.2 (181)                    87 (248)
Ca                  mg·L–1                                                                                              4.11 (7.72)                   20.8 (26)                   13.4 (17.3)                   16 (20.2)
K                   mg·L–1                                                                                              0.40 (0.69)                  0.60 (1.95)                  1.17 (1.92)                   0.60 (2.3)
Mg                mg·L–1                                                                                              0.93 (1.99)                   5.4 (10.3)                   3.13 (11.5)                   5.9 (21.5)
Na                 mg·L–1                                                                                              0.63 (3.34)                  2.22 (16.7)                  2.77 (5.87)                   2.2 (3.02)
Cl                  mg·L–1                                                                                                0.9 (6.08)                   2.93 (21.4)                  1.52 (6.75)                  1.37 (2.54)
SO4                          mg·L–1                                                                                              1.99 (5.29)                   3.9 (39.2)                    3.9 (12.0)                    2.9 (55.2)
SiO2                        mg·L–1                                                                                                0.40 (0.7)                   0.58 (1.15)                   0.48 (1.1)                   0.32 (0.55)
DOC              mg·L–1                                                                                              2.90 (4.74)                  3.80 (6.10)                  3.90 (6.04)                  2.20 (3.12)
POC              mg·L–1                                                                                              0.34 (0.54)                  0.42 (0.57)                   0.29 (0.37                        N/A
DIC               mg·L–1                                                                                                3.7 (5.27)                   15.9 (17.1)                  5.95 (10.1)                  5.00 (7.17)
NH3*             µg·L–1                                                                                               18.7 (33.1)                   11 (20.8)                     23 (29.8)                     11 (13.4)
TKN*            µg·L–1                                                                                                176 (320)                    281 (386)                    290 (445)                    230 (211)
TN*               µg·L–1                                                                                                211 (289)                    376 (486)                    323 (331)                    140 (190)
TP*                µg·L–1                                                                                               6.00 (8.11)                  7.40 (12.5)                  7.70 (10.4)                  7.71 (7.32)
Al                  µg·L–1                                                                                               12.8 (30.8)                  17.7 (150)                    29 (34.6)                     16 (28.8)
Ba                  µg·L–1                                                                                                   4 (5.96)                    7.89 (16.6)                  18.7 (27.4)                   3.3 (14.4)
Fe                  µg·L–1                                                                                               47.7 (147)                   49.4 (226)                  31.2 (81.5)                   47 (44.1)
Mn                  µg·L–1                                                                                              6.57 (523)                    4.6 (575)                   7.35 (15.2)                  8.95 (113)
Sr                    µg·L–1                                                                                             14.5 (22.2)                  30.1 (86.7)                   116 (125)                   28.0 (121)
TN:TP             Ratio                                                       207.8 (248.3)              245.2 (319.5)              229.4 (229.3)               129 (172.3)
Na:Cl               Ratio                                                         1.03 (1.52)                  0.96 (2.15)                  1.39 (3.59)                  0.96 (2.26)
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262 T. Liang and J. Aherne

conductivity was higher for SED =132.0 µS cm–1, SUP =
98.2 µS cm–1, and UNC = 87.0 µS cm–1, compared with
IGN = 40.0 µS cm–1 (Tab. 4). Similar to pH, conductivity
was significantly different (P<0.001) between IGN and
the other geology types (Fig. 5 Left Top; Tab. 7).
Conductivity was more strongly correlated with Ca (rs =
0.89), Mg (rs = 0.88) and DIC (rs = 0.80), than Na (rs =
0.69) and Cl (rs = 0.60) (all with P<0.01; Fig. 4)
suggesting that geology had a greater impact on
conductivity than sea-salt aerosols (as Na and Cl are
markers of sea-salts).

Major cations and anions

The spatial coverage of sites with observations for
selected major cations (Ca, Mg, Na, K) and anions (Cl,
SO4, DIC as a measure of bicarbonate and carbonate)
was representative of the entire study region (see
Supporting Material F4 and F5); 1290 (99.2%) and 1255

(96.5%) sites had observations of either one or more
cation and anion, respectively. The median concentration
for each base cation (Ca = 14.6 mg L–1, K = 0.57 mg L–

1, Mg = 3.70 mg L–1 and Na = 1.65 mg L–1; Tab. 2) was
within the lower range of inland freshwater systems in
Canada (McNeely et al., 1979). The highest median Ca
concentration (20.8 mg L–1) was associated with the
SED geology type, and the highest Mg concentration
(5.90 mg L–1) with UNC (Tab. 4). For both K and Na,
the highest median concentrations (K = 1.17 mg L–1, Na
= 2.77 mg L–1) were observed on the SUP geology (Tab.
4). Sites with lower median cation concentrations were
underlain by IGN geology; Ca = 4.11 mg L–1, K = 0.4
mg L–1, Mg = 0.9 mg L–1, and Na = 0.63 mg L–1 (Tab.
4). Significant differences (p < 0.001) for each base
cation were found between IGN and SED, and IGN and
SUP geology (Tab. 7).

For anions, the median concentrations were 2.05 mg

Tab. 5. Median (mean) values and site count for selected water chemistry variables and ratios by ecoregion type: Arctic Cordillera
(AC), Northwestern Forested Mountains (NWF), Taiga (TA), and Tundra (TU).

                                                                                                           ecoregion

Variable          Unit                                                                AC                            nWF                            TA                              TU

Count                                                                                      24                                56                               118                             1102
Elev                 m asl                                                          153 (231)                    782 (774)                    306 (338)                    774 (306)
DistC                 km                                                           6.43 (13.4)                   138 (190)                    401 (374)                   8.29 (31.9)
Area                   ha                                                             7.7 (139)                   14.7 (46.2)                  13.5 (103)                  4.91 (1290)
pH                                                                                    7.66 (7.38)                  8.37 (8.36)                   7.5 (7.55)                   7.95 (7.74)
Cond             µS·cm–1                                                                                            33.8 (200)                   300 (373)                   39.1 (90.7)                   100 (185)
Ca                  mg·L–1                                                                                             2.70 (20.2)                  30.6 (35.0)                  5.25 (13.3)                 15.3 (20.58)
K                    mg·L–1                                                                                             0.36 (2.38)                  3.02 (4.15)                   0.7 (1.31)                    0.5 (1.48)
Mg                 mg·L–1                                                                                              0.7 (6.89)                   18.5 (28.5)                   1.6 (4.77)                    3.9 (7.75)
Na                  mg·L–1                                                                                             1.36 (6.18)                   4.6 (10.1)                   0.92 (2.56)                  1.65 (13.7)
Cl                   mg·L–1                                                                                             1.17 (7.24)                  1.48 (4.27)                   0.8 (2.44)                   2.38 (18.5)
SO4                           mg·L–1                                                                                             2.28 (71.4)                  24.3 (74.4)                   3.0 (12.7)                    3.0 (27.1)
SiO2                          mg·L–1                                                                                             0.52 (1.02)                  4.03 (4.68)                   0.4 (0.92)                   0.52 (0.98)
DOC              mg·L–1                                                                                              1.5 (2.95)                   10.6 (12.7)                 12.3 (16.06)                  3.15 4.58
POC               mg·L–1                                                                                              0.26 (0.3)                   0.54 (0.93)                  0.58 (0.90)                  0.40 (0.53)
DIC                mg·L–1                                                                                              3.6 (10.6)                   32.0 (34.9)                  3.95 (9.34)                  11.8 (13.9)
NH3*              µg·L–1                                                                                                13 (19.7)                   6.00 (11.6)                  10.0 (13.6)                  13.0 (26.6)
TKN*             µg·L–1                                                                                               120 (294)                    540 (671)                    423 (609)                    230 (329)
TN*                µg·L–1                                                                                              75.0 (109)                   613 (729)                    437 (612)                    287 (403)
TP*                 µg·L–1                                                                                             6.00 (8.89)                  10.8 (13.1)                  7.85 (10.3)                  6.85 (11.2)
Al                   µg·L–1                                                                                             16.2 (34.4)                  30.5 (30.1)                  30.0 (51.0)                  13.8 (122)
Ba                   µg·L–1                                                                                                  1.46 (5)                    32.0 (30.2)                  5.00 (16.6)                  6.37 (13.5)
Fe                   µg·L–1                                                                                               100 (428)                   32.5 (72.5)                  41.0 (179)                   49.0 (204)
Mn                  µg·L–1                                                                                             8.34 (12.8)                  12.9 (19.9)                 61.0 (4849)                 4.43 (94.1)
Sr                    µg·L–1                                                                                             3.68 (10.3)                   174 (195)                   19.0 (106)                  23.0 (64.7)
TN:TP             Ratio                                                         108.7 (496)                 314.8 (400)               251.1 (303.9)               228 (290.4)
Na:Cl               Ratio                                                         1.29 (4.32)                  5.22 (6.18)                  1.71 (2.48)                  0.91 (1.76)
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L–1 for Cl, 3.10 mg L–1 for SO4, and 10.9 mg L–1 for DIC
(Tab. 2). Median anion values were also within the lower
range of inland freshwater systems in Canada (McNeely
et al.,1979). The highest median anion concentrations
were consistently associated with SED geology; 2.93 mg
L–1 for Cl, 3.90 mg L–1 for SO4, and 15.9 mg L–1 for DIC,
while lower medians were consistently found for IGN
geology; 0.90 mg L–1 for Cl, 1.99 mg L–1 for SO4, and
3.7 mg L–1 for DIC (Tab. 4). A similar pattern was
observed for cations and anions, where significant

differences were found between IGN and SED geology
(Tab. 7).

Surface water DIC was highly correlated with Ca and
Mg; rs = 0.87 for Ca, rs = 0.81 for Mg (P<0.01; Fig. 4)
further suggesting the influence of weathering from
bedrock geology. The correlation between Na and Cl (rs
= 0.85; P<0.01, Fig. 4) and elevation (rs = – 0.62;
P<0.01; Fig. 4) suggests a sea-salt influence, which
decrease with elevation (from coast). Generally, median
concentrations were ranked in decreasing order

Fig. 4. Correlation matrix of selected physical and chemical variables showing Spearman’s rank correlation coefficient. Significant
(P<0.01) correlation coefficients are highlighted in colour. Note: the correlation matrix was based on pairwise complete observation,
i.e., correlation between each pair of variables was computed using all complete pairs of observations for those variables.
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264 T. Liang and J. Aherne

Ca>Mg>Na>Na for cations and DIC>SO4>Cl for anions
(Tab. 2). Of the 1300 sites, 1251 had observations of Na
and Cl, where most sites (60.6%; n=758) had Na:Cl
ratios >0.86; the remainder (39.4%; n=493) had Na:Cl
ratios ≤0.86.

Phosphorous, nitrogen and carbon
The spatial coverage of sites with observations of

selected nutrients (TP, TN, DOC) was also representative
of the entire study region (Supporting Material F6), as all
1300 sites had observations of either one or more

Tab. 6. Median (mean) values and site count for selected water chemistry variables and ratios for each Arctic region. 

                                                                                             m asl                     km                       ha                                                µS·cm–1

Region                                                     Count                   elev                    DistC                   Area                      pH                     Cond

Axel Heiberg Is.                                          47                   171 (214)            5.94 (7.37)           15.5 (20.8)           8.05 (5.03)            128 (402)
Baffin Is.                                                    132                  139 (153)            5.62 (12.1)          4.85 (6632)          6.89 (5.23)           50.8 (88.1)
Banks Is.                                                     45                   128 (136)            29.6 (34.1)           1.00 (16.8)           8.10 (7.90)            109 (182)
Bathurst Is.                                                  67                   61 (94.3)            5.27 (7.72)           19.6 (34.0)           8.20 (7.85)            131 (127)
Bylot Is.                                                       47                   179 (237)            4.91 (7.22)           5.86 (25.7)           6.50 (6.50)           15.9 (34.8)
Coats Is.                                                      10                  41.5 (41.3)           7.81 (7.81)                                                                     103 (111)
Cornwallis Is.                                              47                   64 (80.6)            2.00 (4.79)           18.1 (32.9)           8.60 (8.24)            127 (451)
Devon Is.                                                     66                   81 (89.5)            4.76 (7.87)           0.72 (19.1)           8.28 (8.00)            99.5 (121)
Ellef Ringnes Is.                                          25                   43 (38.4)            1.51 (1.41)           0.06 (1.32)           6.80 (6.21)            228 (405)
Ellesmere Is.                                              170                  170 (224)            11.9 (17.8)           1.84 (810)           8.20 (7.65)            216 (356)
Melville Is.                                                  49                  76.2 (125)           3.82 (4.98)           2.06 (15.0)           8.00 (7.81)            56.0 (149)
Mainland Northwest Territories                 153                  311 (289)             312 (315)            18.9 (81.1)            7.5 (7.02)            48.0 (91.2)
Mainland Nunavut                                     190                  111 (180)            79.1 (86.3)          15.0 (1567)          7.55 (6.50)           51.0 (75.7)
Prince Charles Is.                                         5                    10 (8.64)            2.48 (2.58)          2500 (2500)          7.98 (7.98)           76.2 (98.6)
Prince of Wales Is.                                       5                    122 (110)            19.0 (19.4)           0.90 (172)           8.40 (8.18)            65.0 (114)
Prince Patrick Is.                                         35                  8.00 (21.4)           1.17 (1.20)           0.05 (1.43)           7.80 (7.67)            75.0 (115)
Somerset Is.                                                 13                   170 (156)            6.54 (9.45)          11.0 (12.36)          7.90 (7.81)             60.0 (81)
Southampton Is.                                          37                  40.0 (65.1)           6.59 (13.6)           16.0 (259)           7.96 (7.83)            222 (251)
Victoria Is.                                                   88                   139 (159)            22.6 (37.5)           11.1 (32.4)           7.80 (7.74)            140 (156)
Yukon                                                          62                   787 (794)             152 (211)            14.8 (45.1)           8.37 (7.97)            305 (343)
                                                                mg·l–1                 mg·l–1                 mg·l–1                 mg·l–1                 mg·l–1                 mg·l–1

Region                                                        Ca                        K                        Mg                       na                        Cl                        SO4

Axel Heiberg Is.                                   17.8 (32.1)           1.10 (4.22)           4.70 (14.0)           3.40 (53.6)           2.16 (80.6)           9.30 (62.9)
Baffin Is.                                              5.75 (8.64)           0.18 (0.67)           0.83 (1.57)           0.59 (3.37)           0.98 (6.74)           2.91 (8.43)
Banks Is.                                               17.2 (19.2)           0.60 (1.38)           9.10 (12.6)           1.20 (15.6)           2.86 (29.4)           9.30 (15.0)
Bathurst Is.                                           24.7 (22.9)           0.30 (0.55)           4.00 (4.52)           1.78 (4.50)           2.83 (7.69)           3.50 (5.05)
Bylot Is.                                                1.77 (3.33)           0.53 (0.68)           1.29 (1.64)           1.71 (2.18)           1.42 (2.37)           0.70 (2.12)
Coats Is.                                               19.4 (22.6)           0.50 (0.62)           5.90 (6.62)           13.4 (13.1)           25.3 (33.7)           2.61 (4.00)
Cornwallis Is.                                       26.0 (23.9)           0.30 (0.60)           5.15 (5.62)           2.47 (8.81)           4.30 (11.4)           1.55 (5.00)
Devon Is.                                              24.5 (25.1)           0.20 (0.26)           5.45 (6.01)           1.20 (1.85)           2.47 (3.82)           2.50 (13.9)
Ellef Ringnes Is.                                   21.3 (49.1)           2.10 (4.26)           12.4 (35.6)           17.0 (71.6)           7.30 (47.4)            131 (303)
Ellesmere Is.                                         31.0 (42.3)           1.00 (3.64)           7.57 (15.5)           3.25 (27.1)           2.74 (29.8)           7.90 (76.8)
Melville Is.                                           5.8.0 (14.9)          0.85 (1.50)           3.00 (8.10)           2.00 (18.1)           4.12 (35.4)           1.80 (13.1)
Mainland Northwest Territories           5.10 (12.7)           0.77 (1.25)           1.10 (4.30)           0.90 (2.97)           0.80 (3.75)           2.70 (10.9)
Mainland Nunavut                               4.08 (6.40)           0.50 (0.78)           1.32 (2.43)           1.12 (5.67)           1.77 (10.8)           1.71 (2.69)
Prince Charles Is.                                 17.0 (17.3)           0.54 (0.60)           3.23 (3.20)           1.52 (5.35)           1.32 (7.47)           0.90 (2.57)
Prince of Wales Is.                               26.0 (27.0)           0.50 (0.48)           10.3 (10.6)           1.70 (1.54)           3.30 (3.03)           6.70 (9.52)
Prince Patrick Is.                                  12.1 (13.2)           0.80 (1.06)           3.30 (5.15)           4.10 (12.9)           9.32 (25.0)            4.00 (7.7)
Somerset Is.                                          10.0 (13.4)           0.24 (0.24)           3.60 (3.97)           0.71 (1.21)           1.31 (2.18)           1.80 (3.46)
Southampton Is.                                   31.9 (29.8)           0.58 (1.32)           6.10 (6.87)           6.46 (19.2)           3.53 (8.60)           13.2 (39.6)
Victoria Is.                                            22.5 (21.3)           0.34 (0.45)           9.44 (10.9)           0.75 (1.75)           1.70 (4.08)           2.04 (4.45)
Yukon                                                   30.0 (33.1)           2.60 (3.78)           18.5 (28.5)           4.04 (9.30)           1.38 (3.91)           20.5 (68.0)

To be continued on next page
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nutrients. Total phosphorous (TP) ranged greatly from
0.04 to 761.10 µg L–1, with a median of 7.05 µg L–1 (mean
= 11.14 µg L–1, n=1248; Tab. 2). A large portion of sites
were classified as oligotrophic (45.6%, n=569), with
concentrations between 4–10 µg L–1 of TP (CCME, 2004).

This was followed by sites classified as ultra-oligotrophic
(24.8%, n=310), mesotrophic (20.9%, n=261), meso-
eutrophic (5.5%, n=69), eutrophic (2.5%, n=31), and
hyper-eutrophic (0.7%, n=8). Median TP concentrations
per region (Tab. 6) were lowest on Axel Heiberg Is. (3.15

Tab. 6. Continued from previous page.

                                                                mg·l–1                 mg·l–1                 mg·l–1                 mg·l–1                 µg·l–1                  µg·l–1

Region                                                      SiO2                    DOC                    POC                    DiC                    nH3*                   TKn*

Axel Heiberg Is.                                   1.17 (1.74)            2.8 (4.98)            11.6 (13.9)          5.00 (10.67)          5.00 (10.7)            197 (385)
Baffin Is.                                              1.10 (1.30)           1.91 (2.17)           3.99 (5.60)           21.0 (35.8)           21.0 (35.8)            92.5 (150)
Banks Is.                                               1.15 (1.34)            5.60 (6.2)            15.9 (18.0)                                                                     377 (438)
Bathurst Is.                                           0.28 (0.59)           3.20 (3.95)           16.3 (15.5)           7.00 (9.17)           7.00 (9.17)            162 (271)
Bylot Is.                                                1.16 (1.44)           6.10 (5.23)           0.90 (1.03)           10.0 (14.9)           10.9 (14.9)            300 (333)
Coats Is.                                                                            6.11 (5.97)           7.92 (9.20)           12.3 (46.6)           12.2 (46.6)                    
Cornwallis Is.                                       0.40 (0.42)           1.80 (2.26)           19.1 (16.8)           8.50 (7.98)           8.59 (7.98)            80.0 (164)
Devon Is.                                              0.35 (0.51)           1.72 (2.64)           17.2 (16.3)           7.10 (8.52)           7.19 (8.52)            83.5 (116)
Ellef Ringnes Is.                                   1.18 (1.42)           1.90 (2.08)           2.40 (6.22)           5.00 (17.3)           5.00 (17.3)            147 (148)
Ellesmere Is.                                         1.20 (1.97)           3.75 (6.61)           24.1 (23.8)           12.0 (22.2)           12.0 (22.2)            298 (473)
Melville Is.                                           0.20 (0.41)           4.30 (5.28)           6.70 (11.9)           10.0 (11.0)          10.0 (11.04)           224 (327)
Mainland Northwest Territories           0.40 (0.81)            9.8 (12.9)            3.95 (9.08)           9.00 (27.7)           9.00 (27.7)            348 (489)
Mainland Nunavut                               0.30 (0.48)           3.80 (4.99)           4.10 (5.10)           33.0 (37.0)           33.0 (37.0)            218 (366)
Prince Charles Is.                                                              3.79 (3.56)           9.07 (8.60)           15.8 (17.4)           15.8 (17.4)            390 (390)
Prince of Wales Is.                               0.48 (0.45)           4.60 (3.94)           24.7 (24.4)           14.0 (18.6)           14.0 (18.6)            399 (403)
Prince Patrick Is.                                  0.17 (0.41)           6.90 (6.71)           7.60 (9.43)           26.0 (35.3)           26.0 (35.3)            490 (515)
Somerset Is.                                          0.14 (0.22)           0.78 (1.17)           9.35 (9.91)           8.00 (11.9)           8.00 (11.9)            100 (117)
Southampton Is.                                   0.61 (1.16)           5.33 (5.62)           20.3 (19.8)                                                                     235 (207)
Victoria Is.                                            0.80 (0.92)           2.20 (2.71)           21.3 (20.5)          13.0 (17.57)          13.0 (17.6)            230 (258)
Yukon                                                   2.42 (3.84)           10.6 (12.5)           19.3 (27.9)           6.50 (11.5)           6.50 (11.5)            520 (640)
                                                                µg·l–1                  µg·l–1                  µg·l–1                  µg·l–1                  µg·l–1                  µg·l–1

Region                                                      Tn*                     TP*                       Al                        Ba                        Fe                        Mn

Axel Heiberg Is.                                  188 (385.52)         3.15 (4.66)           10 (68.94)           9.6 (18.72)            5 (31.43)             0.4 (40.28)
Baffin Is.                                           89.17 (104.55)         8 (11.72)          8.53 (217.55)         2.51 (3.67)        27.35 (123.71)         4.44 (9.6)
Banks Is.                                             425 (502.69)        9.55 (13.37)         10 (136.91)         14.1 (19.14)        101 (396.22)         14.2 (27.32)
Bathurst Is.                                        476.8 (526.27)        6.47 (8.31)           20 (75.24)          34.5 (47.58)        64.5 (203.52)            3 (5.16)
Bylot Is.                                              255 (303.29)          7.8 (9.33)                                                                                                          
Coats Is.                                            438.34 (516.9)      23.69 (24.76)          6.4 (7.82)            3.31 (3.37)          19.6 (21.33)          8.19 (8.59)
Cornwallis Is.                                      73.11 (63.9)          3.8 (25.69)           6.5 (11.93)           6.2 (17.35)           10 (20.69)            1.05 (1.35)
Devon Is.                                           133.5 (278.01)       6.06 (15.01)          10 (35.29)           2.63 (5.08)           21 (44.08)            1.06 (1.77)
Ellef Ringnes Is.                                 232 (294.52)        11.3 (23.98)         180 (399.2)         13.9 (16.35)        216 (680.32)         18 (205.19)
Ellesmere Is.                                       477 (679.84)         6.34 (7.56)          20 (179.45)          5.1 (11.32)          73.5 (295.7)           5.5 (11.3)
Melville Is.                                         191.5 (191.5)        11.2 (15.39)         55 (329.08)           5.4 (8.39)          150.5 (468.5)         5.45 (7.55)
Mainland Northwest Territories         403 (530.32)         7.8 (10.29)         27.29 (43.31)          5 (15.09)         39.45 (129.63)       44 (3843.76)
Mainland Nunavut                               315 (402.7)           5.8 (7.82)           20.7 (57.43)          6.11 (7.62)         109 (222.63)        6.66 (263.59)
Prince Charles Is.                             432.21 (401.81)     14.75 (15.76)         5.18 (7.41)           1.27 (1.27)          11.78 (13.2)           9.3 (7.22)
Prince of Wales Is.                              174 (305.33)         4.25 (5.18)              40 (39)              13 (15.34)             59 (52.4)              2.1 (1.94)
Prince Patrick Is.                                 591 (616.34)         9.6 (12.45)          30 (117.89)         12.7 (15.82)        267 (724.43)          5.6 (18.49)
Somerset Is.                                      110.69 (144.16)       4.09 (5.36)           5.44 (6.17)            3.7 (3.39)            16 (24.71)             1.7 (2.69)
Southampton Is.                                605.9 (715.56)        4.7 (22.63)         12.35 (20.96)                                   12.35 (18.39)                  
Victoria Is.                                          221 (258.53)          4.1 (5.57)            8.9 (10.56)            6.2 (7.13)          23.95 (31.55)         1.47 (2.05)
Yukon                                                 540 (650.45)       10.57 (13.13)        30.5 (30.07)          32 (30.23)        36.65 (107.08)       13.8 (20.55)

To be continued on next page
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Tab. 6. Continued from previous page.

                                                                                             µg·l–1                                               Ratio                                                Ratio

Region                                                                                     Sr                                                 Tn:TP                                              na:Cl

Axel Heiberg Is.                                                                48.2 (198)                                       375 (593.8)                                       1.39 (4.32)
Baffin Is.                                                                           12.2 (13.5)                                       48.5 (72.6)                                        0.99 (1.24)
Banks Is.                                                                           28.1 (38.1)                                     200.8 (219.1)                                      0.63 (0.77)
Bathurst Is.                                                                       41.5 (86.5)                                     360.2 (356.5)                                      0.88 (1.36)
Bylot Is.                                                                                                                                   170.1 (180.9)                                      1.64 (2.08)
Coats Is.                                                                            26.0 (28.9)                                      96.7 (101.6)                                        0.77 (0.8)
Cornwallis Is.                                                                   44.4 (56.2)                                     129.1 (110.8)                                      0.87 (5.87)
Devon Is.                                                                           20.5 (104)                                      119.5 (142.1)                                       3.6 (4.36)
Ellef Ringnes Is.                                                                70.7 (126)                                        82.2 (89.7)                                        1.14 (2.31)
Ellesmere Is.                                                                     78.3 (126)                                       324.8 (396)                                       0.77 (0.85)
Melville Is.                                                                       16.0 (49.9)                                     116.6 (116.6)                                      1.49 (2.14)
Mainland Northwest Territories                                       12.0 (92.1)                                     230.8 (271.5)                                      0.96 (1.25)
Mainland Nunavut                                                            19.5 (25.4)                                     237.9 (253.2)                                       1.5 (1.71)
Prince Charles Is.                                                              12.7 (15.3)                                     120.7 (121.5)                                      0.79 (0.78)
Prince of Wales Is.                                                            55.0 (48.0)                                     316.3 (269.8)                                      0.71 (0.76)
Prince Patrick Is.                                                              32.3 (48.3)                                     274.8 (284.2)                                       0.84 (0.9)
Somerset Is.                                                                      28.0 (35.3)                                     137.9 (189.1)                                      3.14 (3.55)
Southampton Is.                                                                                                                      588.2 (585.3)                                      0.68 (0.73)
Victoria Is.                                                                        16.1 (18.3)                                     457.8 (576.8)                                      5.13 (6.19)
Yukon                                                                                174 (194)                                      294.5 (344.8)                                      1.39 (4.32)

Tab. 7. Significant differences estimated by Kruskal-Wallis rank sum test and Dunn’s post-hoc test with Bonferroni adjustment for
chemical variables among bedrock geology and ecoregion types indicated by: *P<0.05, **P<0.01, ***P<0.001. Geology type:
sedimentary (SED), igneous (IGN), supracrustal (SUP), and unclassified (UNC). Ecoregion type: Arctic Cordillera (AC), Tundra (TU),
Taiga (TA), and Northwestern Forested Mountains (NWF).

                  ign–SeD    ign–SUP    ign–UnC   SeD–SUP    AC–nWF       AC–TA        AC–TU      nWF–TA     nWF–TU       TA–TU

pH                    ***               ***                  *                                      ***                                                          ***                ***                ***
Cond                ***               ***                ***                                    ***                                                          ***                ***                ***
Ca                    ***               ***                 **                  *                 ***                                       *                 ***                ***                ***
K                      ***               ***                                       *                 ***                                                          ***                ***                ***
Mg                   ***               ***                ***                                    ***                                     ***               ***                ***                ***
Na                    ***               ***                                                           **                                                           ***                ***                 **
Cl                     ***                                                           **                                                                                  *                    *                  ***
SO4                               ***               ***                                                          ***                                                          ***                ***                   
SiO2                             ***                                                                                 *                                                             **                  **                    
DOC                 **                                                                                ***                ***                 *                                       ***                ***
DIC                  ***                **                                        *                  **                                                           ***                  *                  ***
POC                   *                                                                                 ***                ***                                                            *                  ***
NH3*                ***                                                                                                                                                                                            *
TKN*              ***                 *                                                            ***                ***                                                          ***                ***
TN*                 ***                                                                               ***                ***               ***                                     ***                ***
TP*                  ***               ***                                                           **                                                             *                  ***                   
Al                                           **                                                                                                                                                                        *
Ba                    ***               ***                                       *                 ***                  *                    *                 ***                ***                   
Fe                                                                                                           *                                                                                                          
Mn                    **                                                                                                       *                                                            ***                ***
Sr                     ***               ***                  *                 ***               ***                  *                   **                ***                ***                   
No statistical differences were found between SED-UNC and SUP-UNC.
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µg L–1, n=47), Cornwallis Is. (3.80 µg L–1, n=44), and
Somerset Is (4.09 µg L–1, n=9), while higher median TP
concentrations were found on Coats Is. (23.7 µg L–1,
n=10), Prince Charles Is., (14.8 µg L–1, n=5) and Ellef
Ringnes Is. (11.3 µg L–1, n=25). Among geology types,

significant differences (P<0.001) were found between
IGN (median = 6.0 µg L–1, n=332) and SED (median =
7.4 µg L–1, n=825), and between IGN and SUP (median
= 7.7 µg L–1, n=77; Tab. 4). Among ecoregions (Tabs. 5
and 7), significant differences were found for AC (median

Fig. 5. Box plot of conductivity (left top), pH (left middle), and DIC (left bottom) among bedrock geology types, and DOC (right top),
K (right middle), and TN (right bottom) among ecoregion types. Significant differences (Kruskal-Wallis rank sum test and Dunn’s post
hoc test with Bonferroni adjustment) between mean box plot concentrations are indicated by *P<0.05, **P<0.01, ***P<0.001.
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= 6.0 µg L–1, n=23) and NWF (median = 10.8 µg L–1,
n=56; P<0.01), NWF and TA (median = 7.85 µg L–1,
n=118; P<0.05), and NWF and TU (median = 6.85 µg
L–1, n=1050; P<0.001).

Median total nitrogen (TN) concentrations was 312
µg L–1 (n=864; Tab. 2). Cornwallis Is. had the lowest
mean TN concentration (73.1 µg L–1, n=4), followed by
Baffin Is. (89.1 µg L–1, n=88), and Somerset Is. (110 µg
L–1, n=8) (Tab. 6). Higher TN concentrations were found
on Southampton Is. (605 µg L–1, n=32), Prince Patrick Is.
(591 µg L–1, n=35), and the Yukon (540 µg L–1, n=22).
Significant differences in TN concentration (Tab. 6,
P<0.001, Tabs. 4 and 7) were primary found between IGN
(211 µg L–1, n=241) and SED geology (376 µg L–1,
n=590). Among ecoregions, significant differences (all
with P<0.001) occurred between AC (75 µg L–1, n=9) and
NWF (613 µg L–1, n=16), TA (438 µg L–1, n=76) and TU
(286 µg L–1, n=763) and between TU and NWF (613 µg
L–1, n=16) and TA (Fig. 5 Bottom right; Tabs. 5 and 7).

Generally, most sites (99.0%, n=851) were found to be P-
limited (TN:TP > 17), while 1.0% (n=9) were N-limited
systems (TN:TP < 14).

Dissolved Organic Carbon (DOC) concentrations
were almost ten-times higher than Particulate Organic
Carbon (POC) concentrations; median = 3.50 mg L–1 and
0.41 mg L–1, respectively (Tab. 2). Concentrations of
DOC ranged from 0.02 to 69.9 mg L–1 (Tab. 2), reflecting
the coverage of different ecoregions (Fig. 1). Among
regions, higher median concentrations (Tab. 6) were
found for Yukon (11.60 mg L–1, n=59), Northwest
Territories (10.35 mg L–1, n=118), and Prince Patrick Is.
(6.90 mg L–1, n=35), with the lowest concentrations found
for Somerset Is. (0.78 mg L–1, n=9), Devon Is. (1.72 mg
L–1, n=64) and Cornwallis Is. (1.80 mg L–1, n=43). Similar
to TN, DOC was found to be significantly different
(P<0.01; Tab. 7) primary between IGN (2.90 mg L–1,
n=241) and SED geology (3.80 mg L–1, n=590) (Tab. 5).
Among ecoregions, DOC concentrations differed

Fig. 6. Principal component analysis (PCA) of 17 physical and chemical variables for 613 sites (see Supporting Material F3) from
across the Canadian Arctic. Sites are classified by four bedrock geology types from Harrison et al. (2011): igneous (red), sedimentary
(green), supracrustal (blue), and unclassified (purple).
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269Characteristics of Canadian Arctic lakes and ponds

significantly (Fig. 5 Top right, Tabs. 5 and 7) between AC
(1.50 mg L–1, n=21) and NWF (10.6 mg L–1, n=53;
P<0.001), TA (12.3 mg L–1, n=80; P<0.001) and TU (3.15
mg L–1, n=987; P<0.05). Strong correlations (Fig. 4) were
found between DOC and TN (rs = 0.81, P<0.01), and
DOC and TKN (rs = 0.88, P<0.01), while weaker
correlations were found between POC with TP (rs = 0.51,
P<0.01), POC and TKN (rs = 0.50, P<0.01), and TP and
TN (rs = 0.47, P<0.01) (Fig. 4).

Trace metals

More than 40 trace metal species were reported (n=42;
Supporting Material T1), with observations of Al (n=872),
Ba (n=814), Fe (n=1015), Mn (n=875), and Sr (n=819)
reported more frequently (Tab. 2), along with Zn, Cu, and
Li, which had observations at >500 sites (see Supporting
Material T1). See Supporting Material for summary
statistics for other trace metals, e.g., Cd (n=264) and Pb
(n=366) had maximum concentrations of 11.0 µg L–1

(Proteus Lake, Hamilton et al., 2001), and 52 µg L–1

(CI26, Bouchard et al., 2004). These data may be used to
assess trace metal toxicity, or possibly to indicate
contamination; however, this was not the aim of the
current study. The spatial coverage of sites (n=1022,
78.6%) with observations of one or more selected trace
metals (Al, Fe, Mn) had gaps primarily on Bylot Is.,
mainland Northwest Territories and Nunavut, central
Baffin Is., southwestern Bathurst Is., and parts of
Ellesmere Is. (see Supporting Material F7).

From this subset of trace metals (Tab. 2), higher
median concentrations were observed for Al, Ba, Fe, Mn,
and Sr: 17.0 µg L–1 (n=872), 6.5 µg L–1 (n=814), 48.0 µg
L–1 (n=1015), 5.3 µg L–1 (n=875), and 23.9 µg L–1

(n=819), respectively. By region (Tab. 6), higher median
values were found for Al on Ellef Ringnes Is. (180 µg
L–1, n=25), Ba on Bathurst Is. (34.5 µg L–1, n=64), Fe on
Prince Patrick Is. (267 µg L–1, n=35), Mn in the Northwest
Territories (44.0 µg L–1, n=109), and Sr in Yukon (174 µg
L–1, n=33). The lowest median values were found for Al
(5.18 µg L–1, n=4) and Ba (1.27 µg L–1, n=4) on Prince
Charles Is., Fe (5.00 µg L–1, n=45) and Mn (0.40 µg L–1,
n=45) on Axel Heiberg Is., and Sr in the Northwest
Territories (12.00 µg L–1, n=61). 

For geology type, significant differences were found
between IGN–SUP for Al and Mn (Tabs. 4 and 7), i.e.,
[Al] IGN = 12.8 µg L–1, n=225 and SUP = 29.0 µg L–1,
n=37 (P<0.001); [Mn] IGN = 6.57 µg L–1, n=236 and SUP
= 7.35 µg L–1, n=42 (P<0.01). For Ba (Tabs. 4 and 7),
differences were found between IGN (4.00 µg L–1, n=215)
with SED (7.89 µg L–1, n=551) and SUP (18.7 µg L–1,
n=39) (both with P<0.001), and SED with SUP (P<0.05).
For Sr (Tabs. 4 and 7), differences were found between
IGN (14.5 µg L–1, n=215) with SED (30.1 µg L–1, n=556;
P<0.001), SUP (116 µg L–1, n=39; P<0.001), UNC (28.0

µg L–1, n=9; P<0.05), and SED and SUP (P<0.001). No
significant differences were found for Fe across all
geology types. Strong correlations were found between
Sr–Cond (rs = 0.80) and Sr–Ca (rs = 0.78) (all P<0.01; Fig.
4). A weak correlation was observed between Fe–Al (rs =
0.52; P<0.01) and Ba–Sr (rs = 0.66; P<0.01).

Among ecoregions, Al and Fe had only one significant
difference (Tabs. 5 and 7); [Al] TA (30.0 µg L–1, n=16)
and TU (13.8 µg L–1, n=771; P<0.05) and [Fe] AC (100
µg L–1, n=16) and NWF (32.5 µg L–1, n=56; P<0.05).
Manganese was significantly different (Tabs. 5 and 7)
between NWF (12.9 µg L–1, n=55) and TU (4.43 µg L–1,
n=729), TA (61.0 µg L–1, n=81) and TU (both P<0.001),
and AC (8.34 µg L–1, n=10) and TU (P<0.05). For Ba and
Sr, significant difference among ecoregions (Tabs. 5 and
7) were found between AC ([Ba = 1.46, n=9], [Sr = 3.68,
n=9]) and NWF ([Ba = 32.0, n=33], [Sr = 174, n=33])
(P<0.001), AC and TA ([Ba = 5.00, n=53], [Sr = 19.0,
n=53]) (Ba = P<0.05, Sr = P<0.01), NWF and TA
(P<0.001), and NWF and TU ([Ba = 6.37, n=719], [Sr =
23.0, n= 24]) (P<0.001).

Drivers and relationships of water chemistry

Principal component analysis was used to determine
key relationships among water chemistry variables, and
the variability within the dataset (Fig. 6). The PCA was
limited to 17 variables that were common across 613 sites
(see Supporting Material F3). Components one and two
explained a total of 53.4% (PCA 1 = 37.9% and PCA 2 =
15.5%) of the variation (Fig. 6). Eigenvalues (λ) were
6.44 for Component 1, 2.58 for Component 2, 2.08 for
Component 3, 1.41 for Component 4, and 1.15 for
Component 5. Although Component 3, 4, and 5 had
eigenvalues >1.0, they accounted for small portions of the
variation (12.2%, 8.3%, and 6.7%, respectively), and were
not examined further (their loadings are given in
Supporting Material T2). Variables that influenced
Component 1 were (in descending order) Cond > Mg >
Na > Ca > Cl. This suggests that Component 1
represented weathering of carbonate materials, such as
those found on SED geology. Variables associated with
Component 2 were: Al, Fe, and TP, suggesting terrestrial
sources (soil or geology) of TP; Al, Fe, and TP were
correlated with each other (P<0.01; Fig. 4). Similarly,
Cond, Mg, and Ca were clustered with DIC and pH (Fig.
6) and were highly correlated (P<0.01; Fig. 4).

DISCUSSION

This study synthesized observations of water
chemistry from 1300 Arctic lakes and ponds spanning a
period of 37 years (centred on period between 1990 to
2010, n=1050) and updates and complements studies by
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Hamilton et al. (2010) and Dranga et al. (2018). It is
recognized that there is a need to establish further baseline
water chemistry studies (including data other than pH,
conductivity, dissolved oxygen, and water temperature),
especially within regions with known data gaps (AMAP,
2005; Adrian et al., 2009; Bégin et al., 2017).
Hydrochemical information is especially important if
anthropogenic activities such as shipping (and the
associated emissions) are expected to increase into future
(Pizzolato et al., 2016), potentially impacting Arctic
freshwater bodies (Liang and Aherne, 2019). Equally,
temporal studies are needed (Roberts et al., 2017;
Lougheed et al., 2011), as changes such as the prolonging
of the growing season (Rouse et al., 1997) and reduction
of ice-cover days (Surdu et al., 2016) have occurred
within the Arctic region and are expected to impact
physical, biological, and chemical processes in aquatic
ecosystems. 

In this study, the water chemistry of Arctic lakes and
ponds was primarily differentiated along a conductivity /
cation and trace metal / nutrient gradient (Fig. 6). The
conductivity / cation gradient has been previously
reported by other limnological studies (Pienitz et al.,
1997a; Hamilton et al., 2001; Michelutti et al., 2002a,
2002b; Antoniades et al., 2003a, 2003b; Rühland et al.,
2003; Lim et al., 2005; Mallory et al., 2006; Lougheed et
al., 2011), as most study sites are situated over SED
geology (66.5%, n=864; Fig. 2 Top; Tab. 4). The metal
(Al, Fe) and phosphorus gradient observed in this study,
is similar to other studies that have reported a combination
of nutrient (POC, DOC, TNU, PON, TPF, TP) and metal
(Al, Fe, Zn, and Mn) gradients (Pienitz et al., 1997a;
Michelutti et al., 2002a; Antoniades et al., 2003a). Other
studies have reported physical and climatic conditions,
i.e., depth and temperature, as the main drivers of water
chemistry (Pienitz et al., 1997a; Rühland et al., 2003;
Dranga et al., 2017), which may be explained through
more localized drivers, higher biogeochemical cycling
under higher temperatures and/or different cycling
between ponds and lakes. Although depth and
temperatures were not included in the PCA in the current
study (Fig. 6), depth was explored though correlations
(Fig. 4), which indicated significant (P<0.01) weak
correlations between lake depth and Mg (rs = –0.31),
Cond (rs = –0.31), Ca (rs = –0.25), Cl (rs = –0.42), Fe (rs
= –0.59), NH3 (rs = –0.35), TKN (rs = –0.38), TN (rs = –
0.39), POC (rs = –0.35), and TP (rs = –0.39), similar to
other studies (Lim et al., 2001; Medeiros et al., 2012) that
indicated more dilution (lower concentration of ions,
nutrients, and metals) among deeper systems.

Geology as a driver of water chemistry

It is well established that geology can influence
surface water pH (Michelutti et al., 2002a, 2002b;

Antoniades et al., 2003a, 2003b; Lim et al., 2005;
Westover et al., 2009). Lakes situated on SED geology
tended to be more alkaline (median pH = 8.06, n=826)
compared with those situated on IGN geology (median
pH = 7.31, n=328; Tab. 4). One study (Michelutti et al.,
2010) reported a mean pH of 8.1 (n=407; range = 3.6-9.0)
for sites in the Canadian High Arctic, which was more
alkaline than this study (mean = 6.01; range = 3.4-10.9;
Tab. 2), potentially owing to their limited regional
coverage, where geology was predominately sedimentary
(Clague et al., 1989; Dawes and Christie, 1991, 1991; Fig.
2 Top). The PCA clustering of pH and conductivity with
Ca, Mg, and DIC (Fig. 6) suggests that pH and
conductivity are largely influenced by the weathering of
carbonate rich sedimentary geology (Harris et al., 2012),
which is composed of limestone (CaCO3) and dolostone
(CaMg(CO3)2).

Surface waters situated on the IGN geology type, were
significantly different from those located on the other
geological types, and they were generally associated with
lower concentrations of base cations, nutrients, and metals
(Fig. 5 Left middle; Tabs. 4 and 7). This is largely
attributed to the higher quartz (SiO2) content of the IGN
lithology, e.g., granite and rhyolite > 69% SiO2, Trachyte
~ 63% SiO2, and gabbro and basalt 45-52% SiO2

(Hodgson, 2005; Harris et al., 2012), which provides
limited buffering capacity against inputs of acidity
(Dupont et al., 2005). Nonetheless, hydrochemical
outliers were observed within each bedrock geology type,
e.g., sites with high pH were observed on IGN geology.
This is likely an artefact of the scale of the underlying
geological mapping (scale of 1:5,000,000; Harris et al.,
2012), which was not able to capture localized variations. 

Localized geology can have a significant impact on
water chemistry, e.g., one study (Antoniades et al., 2003b)
assessed the pH of 25 sites within a 7.5 km radius, which
resulted in a range of values from acidic 5.1 to more
alkaline values of 7.9. This suggest that lakes and ponds
are greatly influenced by localized geology, which can be
highly spatially variable. Certain geologies may contain
higher concentrations of sulphur, such as pyrite (FeS2)
containing shale, e.g., Smoking Hills, NWT (Havas and
Hutchinson, 1983; Hodgson, 2005), which when oxidised
in the presence of water, produces sulphate (SO4) and
acidity (H+) that can leach into nearby aquatic systems
(acid rock drainage). Previous studies have reported sites
with pH <4.0 influenced by the oxidation of SO4 soils
(Michelutti et al., 2002a; Antoniades et al., 2003a;
Johannesson and Lyons, 1995) resulting in higher SO4

concentrations in surface waters (Havas and Hutchinson,
1983; Michelutti et al., 2002; Antoniades et al., 2003a).
Two sites surveyed in the current study (KM_6, and
KM_7 near Kimmirut) had pH <4.0 and high SO4

concentrations (>50 mg L–1) attributed to iron sulphide
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minerals commonly found on the Meta Incognita
Peninsula (Hodgson, 2005).

Drivers of Na and Cl

Elevated concentrations of Na and Cl in Arctic lakes
and ponds are commonly associated with the influence of
sea-salt aerosols, especially among coastal sites (Pienitz
et al., 1997a; Lim et al., 2001 Michelutti et al., 2002a;
Antoniades et al., 2003b; Mallory et al., 2006; Cӧte et al.,
2010; Hadley et al., 2013). Of the 1251 sites with
observations of Na and Cl, approximately 61.2% (n=766)
had ratios >0.86, which suggests some contribution from
the weathering of bedrock geology and the soil cation
exchange complex. Although, Na is largely attributed to
sea-salt aerosols, other sources such as the weathering of
bedrock, especially for sites on shale (McNeel et al.,
1979; Cerling et al., 1989). In general, the concentration
of sea-salts (primary Na and Cl) decreases exponentially
from the coast to 200 km inland, where concentrations
remain stable (Suzuki et al., 2002). In this study, most
sites were situated within < 200 km (88.6%, n=1153) from
the coast (Fig. 3) and at low elevations, <100 m asl
(40.3%, n=524), which suggests a sea-salt influence, as
evidenced by the strong correlation between Na and Cl (rs
≥ 0.85, P<0.01, Fig. 4) and their clustering in the PCA
(Fig. 6). 

Drivers of nutrients

In generally, most Arctic lakes and ponds in this study
were nutrient poor, with TP the limiting factor for primary
productivity. We found that 45.6% of sites were
oligotrophic (4.0–10.0 µg L–1 of TP; CCME, 2004) and
24.8% were ultra-oligotrophic (<4.0 µg L–1 of TP; CCME,
2004). Phosphorous can enter the aquatic system through
external loading, such as that from the decay of vegetation
matter (Antoniades et al., 2003b), mammal and avian
feces (Lim et al., 2001; Mallory et al., 2006; Hessen et
al., 2017) and runoff over phosphorus geology (Hamilton
et al., 2001). The clustering of Al, Fe, and TP (Fig. 6) and
the weak correlation between TP with Fe (rs = 0.44) and
POC (rs = 0.50) (P<0.01; Fig. 4) suggest allochthonous
(outside of the aquatic system) inputs of phosphorus such
as from geological sources from strengite (FePO4 2H2O)
and carbonatite, or SED phosphorites found in shale or
chert (Konhauser et al., 1994; Hamilton et al., 2001;
Antoniades, et al., 2003a; Harrison et al., 2011). Large
Arctic avian colonies, such as those by the Greater Snow
Geese (Chen caerulescens atlanticus), Lesser Snow
Geese (Chen caerulescens caerulescens) and Ross’s
goose (Chen rossii), have been known to cause vegetation
degradation within lake catchments (Alisauskas et al.,
2006; Hines et al., 2010) and enhance phosphorus
concentration within surface waters (Mallory et al., 2006;

Brimble et al., 2009; Côte et al., 2010; Michelutti et al.,
2010). However, it is unknown if this is the mechanism
for the 39 sites classified as eutrophic or hyper-eutrophic
in the current study. Although these processes (inputs
from geological and biological sources) suggest high
inputs of phosphorus, in reality TP availability is often
limited. Since most sites (with available data) are shallow
(85.4%, n=581; Fig. 3 Bottom) and small (58.0%, n 509,
at ≤10 ha; Hamilton et al., 2001), they are generally more
oxic environments that bind phosphorus to iron (III)
compounds in lake sediment (Mortimer, 1941;
Søndergaard et al., 2003). Whalen and Cornwell (1985)
suggest that most phosphorus enters polar lakes through
streams and runoff and is removed though sedimentation
and burial.

When using TN concentration to determine trophic
status, 54.9% (n=474) of the sites were considered to be
oligotrophic (TN <350 µg L–1; Nürnberg, 1996). Past
studies of Arctic aquatic systems (Alexander et al., 1989;
Ditmar and Kattner, 2003) suggest that inputs of nitrogen
are primarily the result of nitrogen fixation from algae and
cyanobacteria (Whalen and Cornwell, 1985; Alexander et
al., 1989). Strong correlations between nitrogen species
(TN and TKN) with DOC (rs = 0.81, rs = 0.88, P<0.01;
Fig. 4) may reflect allochthonous inputs of organic
nitrogen. Some have attributed elevated TN concentration
with the input of feces from large bird colonies (Mallory
et al. 2006; Brimble et al., 2009; Keatley et al., 2009;
Michelutti et al., 2010). However, these cases were not
found to be common across our results, i.e., the majority
of sites were nutrient poor (oligotrophic = 45.6% and
ultra-oligotrophic = 24.8%). This large input of nitrogen
(from feces) can enhance vegetation development as
nitrogen is more limiting than phosphorus in terrestrial
tundra ecosystems (Elser et al., 2007). For example,
Bazely and Jefferies (1985) reported that the increase in
biomass of Creeping goose grass (Puccinellia
phryganodes) and Hoppner’s sedge (Carex subspathacea)
were significant (P<0.01; mean of geese site = 199 g m–3

vs non-geese sites = 122 g m–3) when plots were treated
with geese feces. It is suggested that increased vegetation
production could be the result of inputs of geese feces
(soluble nitrogen) from large flocks (>5000 pairs of
Lesser Snow Geese) of waterfowl, such as that observed
by Bazely and Jefferies (1985). 

Carbon across Arctic aquatic systems is
predominately found in the form of DOC; median DOC
across the Canadian high Arctic has been previously
reported to be 3.0 mg L–1 (n=404; Michelutti et al.,
2010), which is slightly lower than found in this study
(3.50 mg L–1, n=1135; Tab. 2). This can be attributed to
the inclusion of lower latitude studies, e.g., Moser et al.
(1998), Wilson and Gajewski (2002), Rühland et al.,
(2003), in the NWF and TA ecoregions (Fig. 2 Bottom;
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Tab. 1). However, lower DOC concentrations across the
Arctic may be attributed to slow biogeochemical
processes owing to lower surface and subsurface
temperatures. Vegetation and soils within catchments
provide an allochthonous source of organic carbon via
terrestrial runoff, especially during the spring melt (Neff
et al., 2016). Further, carbon sources change from recent
organic matter, i.e., vegetation litter and surface soil
horizons, during the spring to older stored carbon during
the late summer. Other studies have reported higher
DOC concentrations with more lush vegetated
catchments (Lim et al., 2001, 2005; Wilson and
Gajewski, 2002; Antoniades et al., 2003a; Rühland et
al., 2003). The weak but significant correlations
observed between DOC with K (rs = 0.54, P<0.01, Fig.
4) supports vegetation driven DOC as K is an essential
nutrient. However, it should be noted that DOC
concentrations may also be influenced by localized
characteristics such as organic soils, catchment
connectivity, thawing of permafrost, and discharge from
wetlands (Tarnocai, 2003; Sobek et al., 2007; Rautio et
al., 2011; Amon et al., 2012). 

Changes to water chemistry

Global, regional, and localized anthropogenic
activities may impact the water chemistry of arctic lakes
and ponds. Global climatic change is expected to increase
rates of precipitation in the Arctic (7.5–18.1% greater)
with larger portions occurring as rain (Kattsov et al.,
2005; AMAP, 2017). Higher air temperatures (leading to
the thawing of permafrost) and (wet) precipitation
volumes can increase the transportation (via runoff) of
solutes and nutrients into aquatic environments, thus
changing their physical (Osterkamp and Romanovsky,
1999; Payette et al., 2004; Smith et al., 2005;
Romanovsky et al., 2010; Plug et al., 2008) and chemical
characteristics (Prowse et al., 2006; Walvoord and Strieg,
2007). A recent study (Roberts et al., 2017), reported that
increased solute mobilization and catchment drainage
from increased summer precipitation and higher
temperature caused an increase of +500% and +340% in
sulphate concentrations (from 5 to 17 mg L–1 and from 3
to 15 mg L–1) from 2006 to 2016 in two high Arctic lakes.
In addition, concentrations of Ca (~50%), Mg (~75%), K
(~25 to 75%), and Na (~75 to 100%) also increased
between 2003 and 2015 (Robert et al., 2017). Further,
Thienpont et al. (2013), reported that disturbed lakes
(n=5) had higher ionic concentrations when compared to
reference lakes (n=5) with no disturbance from thaw
slumping. These large changes in water chemistry from
enhanced catchment processes (owing to climatic change)
illustrate the urgency to capture hydrochemical data prior
to disturbances and the need for long-term monitoring
sites across the Canadian Arctic. The full impacts of

physical and chemical changes to aquatic systems are
unknown, as both positive (Lamoureux and Gilbert, 2004;
Michelutti et al., 2005, 2007; Thienpont et al., 2013) and
negative (Reist et al., 2006; Robert et al., 2017) changes
to biological communities have been shown.

Atmospheric transport of pollutants can have far
reaching impacts to Arctic lakes and ponds. Inputs of
pesticides (Zhang et al., 2013), heavy metals (Outridge et
al., 2002), and acidifying pollutants (sulphur and nitrogen,
Forsius et al., 2010) can influence the chemical
characteristics and the biological communities of aquatic
ecosystem. Further, localized anthropogenic activities
(Fig. 1) near population centers (Bunbury and Gajewski,
2002; Michelutti et al., 2007a; Hamilton et al., 2010;
Medeiros et al., 2012; Liang and Aherne, 2019) and
roadways (Moser et al., 1993; Bunbury and Gajewski,
2002; Pienitz et al., 1997a), can influence the water
chemistry of lakes and ponds. Discharge from wastewater
treatment plants has been found to greatly elevate nutrient
concentrations resulting in oxygen depletion, altered
sediment conditions, and reduced hatching rates of fish
(Schindler et al.,1974; Douglas and Smol, 2000;
Moiseenko et al., 2009). Similarly, anthropogenic
structures such as paved and gravel roads (calcareous road
dust) have been shown to elevate conductivity, pH, and
major ions in aquatic systems (Spatt, 1978; Everett, 1980;
Gunter, 2017; Zhu, 2019).

Limitations of this study

In the current study, the data window spanned more
than 30 years; it is likely that water chemistry has changed
during this period owing to natural and anthropogenic
pressures, which may have influenced our results.
Unfortunately, we did not have access to long-term
records from discrete monitoring locations to evaluate the
potential changes. Robert et al. (2017) reported changes
to the physical and chemical characteristics of two
adjacent lakes (in separate watersheds) within a span of
13 years. They found that Mg, Na, SO4, Cl, and specific
conductivity increased while other chemical parameters
such as Ba, Fe, Mn, and Zn, decreased between 2003 and
2015. Further, our study was limited by gaps in spatial
coverage as chemical variables were not available for all
1300 sites (see Supporting Material F4, F5, F6, and F7,
to understand the spatial coverage of selected chemical
variables). 

The initial database had numerous observations below
detection for trace metal species. While we attempted to
impute these missing values to prevent bias (see
methods), the analysis of trace metals is nonetheless
uncertain, e.g., As (n = 244) had a maximum observed
concentration of 17.1 µg L–1 (see Supporting Material T1)
as a result of a detection limit of < 20.0 µg L–1 (Turnabout
Lake, Babbaluk et al., 2009).
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CONCLUSIONS

Few studies have provided an overview of Arctic water
chemistry on a regional scale (Hamilton et al., 2001;
Medeiros et al., 2012; Dranga et al., 2018). In general,
bedrock geology dictates the chemistry of Arctic surface
waters, with significant differences between sites on
sedimentary compared with igneous geology. Lakes on
sedimentary bedrock tend to be alkaline, and have higher
concentrations of major ions, nutrients, and trace metals
than those on igneous geology. Nonetheless, localized
characteristics such as proximity to the coast, minerology
(pyrite or carbonate minerals) and biological communities
(avian colonies or vegetation) can also greatly impact pH,
concentrations of metals, and nutrient inputs.

Changes within the cryosphere under climate change
and from anthropogenic activities are expected to impact
the Arctic landscape and will ultimately change the
chemistry of Arctic lakes and ponds. Current Arctic
limnological studies are limited owing to logistical
constraints, which has resulted in spatial and temporal
data (and knowledge) gaps, and a grab-what-you-can
sampling design. Localized limnological studies with
comprehensive hydrochemical observations are needed to
fill known spatial gaps, such as those on Baffin Is, Prince
of Wales Is., southwestern Victoria Is., and the northern
mainland of Yukon and Northwest Territories (other than
the Mackenzie basin). Ultimately, knowledge of the
baseline limnological characteristic of Arctic lakes and
ponds is central to assessing the potential impacts from
anthropogenic activity, such as those from increased
shipping (Pizzolato et al., 2016; Liang and Aherne, 2019).
In addition, and equally as important, is the need for long-
term studies (Roberts et al., 2017), or to some extent the
re-survey of sites (Lougheed et al., 2011), to support the
assessment of climate change impacts on Arctic aquatic
ecosystems.
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