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INTRODUCTION

The contamination of water bodies by water-borne
pathogens and the human health safety related to the
pathogen contamination are some of the major water
quality concerns around the world (Pandey, 2014).
According to The World Health Organization (WHO),
approximately 3.4 million people, mainly children, die
from water-related diseases every year (WHO, 2016).
Water-borne diseases are a problem not only in
developing countries (although they are prevalent) but
also in well-developed countries (Arnone and Walling,
2007; Wacnik, 2009). Studies conducted by the U.S.

Environmental Protection Agency revealed that pathogens
are leading factors of water impairment (Pandey et al.,
2014). In turn, all infectious diseases caused by bacterial
pathogens are major causes of death throughout the world
(Binder et al., 1999), which demonstrates the great danger
posed by pathogenic microorganisms. Many infectious
diseases are caused by anthropogenic disturbances to
aquatic systems, including the overuse of water resources,
climate change and animals and human pollution impact
(Ahmed et al., 2016; Cavicchioli et al., 2019). To predict
the survival and transport of pathogens at the watershed
scale, several models were developed (Dorner et al., 2006;
Cho et al., 2016). However, many pathogen transport
models consider only temperature-induced mortality and
growth, and they omit the interplay with other
environmental water quality factors, such as biogen
(nitrogen, phosphorus, carbon) concentration, organic
matter content, and several physical and chemical
properties of the aquatic environment. Greater amount of
nutrients increases the amount of sediments, which are a
reservoir and source of nutrients for pathogenic bacteria
(Pandey et al., 2014). The presence of microorganisms is
also influenced by hydrometeorological changes such as
heavy rainfalls and elevated temperatures which increase
with climate change (Jung et al., 2014). Rainfalls cause
increased surface runoff, providing allochthonic
microflora and enriching the aquatic environment with
biogenic substances from the catchment area. That allows
the development of both autochthonous and
allochthonous microflora. Furthermore, several studies
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31Legionella and Aeromonas spp. in the Great Masurian Lakes system

have shown consistent and significant association
between heavy rainfall events and waterborne disease
outbreaks (Jung et al., 2014; Levy et al., 2016).

In natural and pristine water ecosystems, phosphorous
or nitrogen contents are the limiting factors for plankton
biomass production. However, human activity has
changed this significantly and accelerated the supply of
nutrients; as a consequence, the rates and scales of
eutrophication have also increased (Correll, 1999). 

Great Masurian Lakes (GML) system consisting of the
two hydrologically different parts separated by the line of
the watershed placed between Kisajno lake and Niegocin
lake (Fig. 1). Both parts of GML system differ distinctly
in respect to their morphometry, the trophic status and the
level of human impact (Siuda and Kiersztyn, 2014).
Present trophic status of the GMLS was shaped by four
basic factors: i) geographical location - its division into
two separate parts carrying waters into two watersheds and
evolving in a diverse way; ii) relatively low anthropogenic
impact on catchment areas of northern lakes and strong
anthropopressure exerted simultaneously on the catchment
areas of southern lakes; iii) political economic and social
changes in Poland in the years 1980-1990, which increased
a tourism in the region; and iv) climate changes occurring
in the last few decades, resulting in an increase in mean
daily temperatures in winter, shorter ice cover, and also
shortening of autumn and spring homothermic periods
(Siuda et al., 2020). Because the microbial contamination
of water is often caused by discharge of polluted water
from sewage treatment plants as well as from non-
collective sewage systems, it is important to monitor
microbiological hazards of natural waters. Microbiological
and sanitary monitoring of water commonly rely up on
simple and rapid indicators, such as fecal bacteria
(Escherichia coli or Enterococci) (Jung et al., 2014). So
far, the presence of Legionella and Aeromonas spp. in the
water reservoirs of the system of the Great Masurian Lakes
has not been monitored.

A significant number of studies on microbial pathogen
contamination of aquatic systems have been conducted at
a laboratory-scale; however, to understand the transition
and survival of pathogens in natural water environments,
field-scale studies are needed (Pandey et al., 2014). One
of the studied pathogens of our interest was Legionella
genus, which covers 61 species, and among them, 22
species are responsible for human disease. Legionella
pneumophila is responsible for the largest number of
legionellosis (Lizana et al. 2017). Pathogenic strains of
Legionella spp. are etiological factors of Legionnaires’
disease – severe, life-threatening pneumonia – and a less-
severe disease called Pontiac Fever. Contagion occurs by
inhalation of Legionella-contaminated water aerosols.
Legionella spp. upon transmission to human infect and
replicate within alveolar macrophages (Pasqualina et al.,

2017). The capacity to replicate in human macrophages is
related with the innate ability of Legionella to replicate
within various free-living protozoa. This ability is one of
the strategies to survive in unfavorable conditions (Amaro
et al., 2015). The host cells enable bacterial replication,
and viable released bacteria are more virulent than
Legionella spp. that bypassed intracellular multiplication
(Richards et al., 2014; Correll, 1999). Legionella spp. are
also able to be transformed into a viable but nonculturable
forms. All these strategies allow Legionella to resist to
biocide compounds and chlorination (Borella et al., 2005).
Moreover, these bacteria are remarkably fastidious in
axenic cultures which makes it difficult to detect using
culture methods. Therefore, real-time PCR is an
appropriate method for detecting lower levels of
contamination, as well as nonculturable Legionella (Devos
et al., 2005; Edagawa et al., 2015). Legionella are bacteria
strictly associated with man-made water systems such as
cooling towers, swimming pools, air conditioner systems,
and plumbing systems. However, these microorganisms
are numerous also in natural water reservoirs (Barna et al.,
2015). Many studies have shown, that these bacteria
multiply at temperature ranging from 20 to 45°C
(Dimitriadi and Velonakis, 2014). However, Legionella
spp. may adapt to aqueous environments even at low
temperatures and are able to survive over a wide range of
temperatures: from 0 to 63°C (Nguyen and Yu, 1991).

Aeromonas was the second genus of bacteria that we
focused on in our studies. Today these bacteria are
described as emerging pathogens (Batra et al., 2016).
Aeromonas are strictly associated with the aquatic
environment and were firstly described as pathogens of
fishes and other cold-blooded animals. Currently these
bacteria are also recognized as a human pathogen. The
interest in this genus has increased over previous decades.
This is due to widespread occurrence, the increasing
antibiotic resistance and ability to survive under
unfavorable environmental conditions (Janda and Abbot,
2010). Aeromonas spp. with Aeromonas hydrophila at the
forefront, are associated with gastrointestinal, skin, soft
tissue, respiratory and urinary tract infections in both
immunocompetent and immunocompromised persons
(Martino et al., 2014). Because classic culture and
biochemical methods for identifying Aeromonas spp. are
multi-stage and difficult to interpret, there is need to use
molecular methods for reliable identification of Aeromonas
spp. (Beaz-Hidalgo et al., 2010; Králová et al., 2016).

The goal of our research was to detect and quantify of
Legionella spp. and Aeromonas spp. with particular
emphasis on Legionella pneumophila and Aeromonas
hydrophila species in lake water with different trophic
status belonging to the GML system. We evaluated
whether the eutrophication processes in the studied lakes
influenced the frequency of occurrence of the studied
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pathogenic strains of bacteria. The research is important
in view of complementing the current state of knowledge
concerning the relationship between environmental water
quality properties and the presence frequency of
Aeromonas and Legionella species. Therefore, in our
report, we present the results of studies on the relationship
between environmental conditions and the presence and
abundance of pathogenic bacteria strictly associated with
the limnological quality of the water environment –
Legionella spp. and Aeromonas spp.

METHODS

Research area

Our research area comprises lakes connected by
natural or artificial channels that constitute the Great
Masurian Lakes (GML) system located in northeastern
Poland, which extends for approximately 100 km from
south to north. The GML system is located in two river
basins. The watershed location is not strictly determined,
but it varies between Kisajno Lake and Jagodne Lake.
This contractual boundary divides the system into
northern (lakes: Przystań, Mamry, Dargin, Kisajno) and
southern parts (lakes: Niegocin, Boczne, Jagodne,
Szymoneckie, Szymon, Tałtowisko, Tałty, Ryńskie,
Mikołajskie, Bełdany, Śniardwy) (Fig. 1). The water
reservoirs that constitute this exceptional waterway
represent moraine and channel types of postglacial lakes.
The part of Poland that comprises the GML system is
called the Great Masurian Lake District (GMLD). This

part of Poland is a unique area formed by ice sheets of the
Pomeranian Phase of the Vistulian Glaciation in the late
Pleistocene (Wacnik, 2009). The basic morphological
parameters of the studied lakes are presented in Tab. 1.
The GML District is characterized by the highest surface
water content in Poland. The entire catchment area of the
GML system encompasses approximately 3645 km2, of
which, the northern lakes cover 615 km2 and the southern
lakes cover 3030 km2. This size difference is one reason
for the greater exposure of southern lakes to
eutrophication processes. The system is located in the
same geographical area under similar geological
conditions. The area surrounding the lakes is mainly
represented by agriculture fields and forests (Chróst and
Siuda 2006). Water from the northern lakes is drained by
the Węgorapa River to the Pregoła River basin, and water
from the southern lakes is drained by the Pisa and Narew
Rivers towards the Wisła River basin. 

The GMLD is of great importance for tourism and the
economy and is intensively used for recreational purpose
especially during the summer season (Siuda et al., 2019).
The number of tourists in the Masurian region reaches
about one million persons per year, with the highest peak
from June to August (Kauppinen, 2013).

The sampling procedure was conducted by
considering places within easy reach of humans, such as
watering locations, ports or sites for water sport practice.
The sampling sites were selected by the largest probability
of both introduction of allochthonous microflora and
human contact with contaminated water, and
consequently, the greatest possibility of infection.

Tab. 1. Basic morphological data of the studied lakes, coordinates of sampling locations and mean trophic state index determined during
particular research seasons.

Lake                           Area           Max depth     Mean depth            Coordinates of                  Mean TSI              Mean TSI               Mean TSI
                                    (ha)                  (m)                   (m)                sampling location                  summer                   spring                    autumn

Przystań                       115                  22.8                  13.4             54.207241, 21.657892             42.18±2.18             43.17±2.25              41.12±2.96
Mamry                       2 504                 43.8                   10              54.157234, 21.723144             40.20±8.98             44.22±2.55              39.40±3.85
Dargin                        3 030                 37.6                   11               54.145939, 21.731939             42.77±0.96             41.87±4.84             51.69±15.27
Kisajno                       1 896                  25                    8.4              54.042000, 21.738594             52.59±2.99              43.8±1.50               49.98±6.45
Niegocin                    2 600                 39.7                   9.9              54.009215, 21.738598             48.47±2.76             48.25±3.54              54.27±8.93
Boczne                         183                    25                    8.4              53.967407, 21.758265             50.21±4.21             50.32±4.35             53.20±10.53
Jagodne                       420                  37.4                   8.7              53.945283, 21.721688             58.53±2.98             57.95±2.95              57.27±4.69
Szymoneckie               523                  28.5                   8.7              53.918687, 21.697991             59.27±2.28             55.71±3.27              56.07±5.07
Szymon                       154                   2.9                    1.1              53.891046, 21.633682             57.58±1.34             58.48±1.27              58.08±1.67
Tałtowisko                   327                  39.5                   14              53.880376, 21.560412             56.42±3.00             56.97±4.14              52.73±5.38
Tałty                           1 160                 50.8                   14              53.813409, 21.567998             59.33±3.83             55.33±2.72              53.10±5.99
Ryńskie                        671                  20.2                  13.5             53.935961, 21.544402             59.91±1.21             58.83±4.92              54.50±4.91
Mikołajskie                  498                  25.9                  11.2             53.801142, 21.570925             59.14±2.04             55.52±2.45              53.94±5.68
Bełdany                       941                    46                     10              53.686344, 21.578000             60.54±1.23             58.76±2.09              56.39±3.51
Śniardwy                   11 340                23.4                   5.8              53.766621, 21.842127             42.07±3.82             42.17±1.81              50.53±4.67
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33Legionella and Aeromonas spp. in the Great Masurian Lakes system

Sampling and experimental procedure
Water samples were taken from the water column of

15 lakes in July 2016, and subsequently from the same
sampling sites in May 2017 and in September 2017.
Sampling sites were located within land-water ecotones

(from 10 to 50 m distance from the lake shorelines). The
sampling sites have been chosen in lake areas exposed to
high human recreational activities (swimming areas,
yachting ports, etc.). The samples were taken using sterile
sampling bathymeter, that was used to take water samples

Fig. 1. Locations of sampling sites within the Great Masurian Lakes system. The blue arrows indicate the water flow direction. From
the watershed division border to the north the northern lakes are located, from the watershed division border to the south there are
southern lakes.
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at a desired depth without the risk of mixing with water
from other depths. We took the samples from randomly
chosen points within a radius of 30 m from each of the
main sampling sites. The sampling sites are shown in Fig.
1. From every sampling point equal volume of water was
sampled from three depths: 1, 2 and 3 meters. All
subsamples (about 1.67 L of every subsample) were
mixed v/v to a volume of 5 liters and transported as soon
as possible under cool temperature conditions to the
laboratory where they were subjected to further analysis
within 3-6 hours. Using a multiparametric probe YSI6600
(Yellow Spring, USA), the temperature, conductivity,
oxygen concentration, pH and turbidity in the water
column (from the water surface to bottom sediments)
were measured in situ. The transparency of the water was
also measured using a Secchi disk (SD) visibility survey.

Chlorophyll a (Chl a) content in all water samples was
determined according to Arrar and Collins (1997). For this
purpose, extraction of 10 mL water sample with 10 mL of
98% acetone and fluorescence measurements at 750 nm,
with use of a TD-700 fluorometer were carried out.
Dissolved organic carbon (DOC) concentrations in water
samples, prefiltered through 0.2 µm pore-size
polyethersulfone membrane filters (Merck Millipore,
USA), were determined using a Shimadzu TOC 5050
carbon analyzer with a detection limit and accuracy of
±50 µg C L–1 (Chróst and Siuda, 2006). Phosphorus
concentrations, fractions of total phosphorus (TP) and
orthophosphates (P-PO4) were determined
spectrophotometrically according to Koroleff (1983a)
using Shimadzu UV-VIS 1201 spectrophotometer. Total
nitrogen (TN) was determined using commercially
certified Merck-Millipore cell tests [Spectroquant
Nitrogen (Total) Cell Test, 114537] according to the
manufacturer’s instructions using Merck Spectroquant
Pharo 300 spectrophotometer. The ammonium
concentrations in the water samples were assayed
fluorometrically in a Shimadzu RF 1500
spectrofluorometer, according to Holmes et al. (1999).

Trophic state index 

The trophic state index (TSI) at each sampling site was
calculated based on chlorophyll a (Chl a), total
phosphorus concentration (TP) and Secchi disc visibility
(SD) according to Carlson (1977). To calculate the TSI,
the following equations were used, respectively:

TSI (Chl a) = 9.81 ln (Chl a in µg L–1) +30.6;
TSI (TP) = 14.42 ln (TP in µg L–1) +4.15;

TSI (SD) = 60 – 14.41 ln(SD in m).

Subsequently, the TSI values calculated separately on
the basis of the above, mentioned indicators were
averaged, and the mean values of the trophic state of the

sampling sites were determined. TSI values between 30
and 40 indicated oligotrophy, values between 40 and 50
indicated mesotrophy, values from 50 to 70 indicated
eutrophy, and TSI values above 70 indicated
hypereutrophy.

DNA extraction and amplification

A total of 150 mL of water from each sample was
filtered through polycarbonate membranes with pore sizes
of 0.2 µm (Nuclepore, Whatman, UK). The filters were
placed in sterile 1.5 mL Eppendorf-type tubes and
immediately frozen at -30°C until further DNA extraction.
DNA extraction was done using the GeneMATRIX Soil
DNA Purification Kit (EURx, Poland) according to the
instruction manual supplied by the manufacturer with the
modification that concerned the preparation of filters for
DNA isolation. The filters were fragmented using sterile
laboratory scissors in a bead beating tube containing beads
and lysis solution. The aim was to lyse the microorganisms
in the filters by a combination of heat, detergent and
mechanical force against the beads. Specialized solution
was added to precipitate humic substances that strongly
inhibit downstream applications. Optimized buffer and
ethanol provided selective conditions for DNA binding to
the DNA binding spin-columns. Contaminants remaining
on the resin are efficiently removed in two washing steps.
High-quality DNA was then eluted in low salt buffer.
Isolated total DNA was checked for quality and quantity
by agarose electrophoresis and a Synergy H1 microplate
reader (Gen5 software, BioTek, USA), respectively, and
the samples were subsequently stored at -20°C prior to
further analysis.

To determine the presence and number of
microorganisms of the genus Legionella and the species
Legionella pneumophila, the commercial and specific
mericon Quant Legionella spp. Kit and mericon Quant L.
pneumophila Kit (Qiagen, Germany) were applied. These
kits are a ready-to-use systems for the detection of specific
DNA fragments from Legionella spp. and L. pneumophila
in water, food, animal feed and pharmaceutical products
using real-time PCR. Using the above mentioned kits, real-
time PCR detection and quantification were carried out
according to the instructions provided by the manufacturer.
The reaction mix per each sample contained 5 µL of
mericon Assay inclusive Multiplex PCR Master Mix,
HotStarTaq Plus DNA Polymerase and specific primers
and probes. In case of samples which formed standard
curves, the 5 µL of respective standard dilutions (from
1.25x101 to 1.25x104 cells per reaction) of prepared from
purified Legionella spp. and L. pneumophila standard
DNA were added. Additionally, Quantification control as
positive control was applied with 5 µL of Quantification
control with Legionella spp. and L. pneumophila DNA
respectively. Moreover a negative control was applied. An
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appropriate amount of DNA, according to manufacturer’s
instruction (50ng), in case of tested samples were added
to the final reaction volume of 10 µL. The reaction runs
for the quantification of Legionella spp. and L.
pneumophila cells were as follows: polymerase activation
for 5 min at 95°C and 40 cycles comprising denaturation
for 15 sec at 95°C and annealing and plate read for 23 sec
at 60°C and final extension for 10 sec at 72°C. The
quantitative detection of Aeromonas spp. was based on the
detection of the gene fragment encoding the conserved
gyrase B subunit (gyrB) using primers sequences
according to Khan et al. (2009) (forward primer: 5’-
CTGAACCAGAACAAGACCCCG-3’, reverse primer:
5’-ATGTTGTTGGTGAAGCAGTA-3’). The size of
amplified fragment was 130 bp. Regarding the detection
and quantification of A. hydrophila in the studied lake
water samples, amplification were conducted using the
specific primers for gene encoding the Aeromonas
hydrophila adhesin (ahaI), according to Sebastião et al.
(2018): forward primer 5’-
GAGAAGGTGACCACCAAGAACA-3’ and reverse
primer 5’-GAGATGTCAGCCTTGTAGAGCT-3’. The
length of ahaI fragment was 200 bp. In the case of
Aeromonas spp. as well as A. hydrophila real-time PCR
detection and determination were applied using the iTaq™
Universal SYBR®Green Supermix reaction mixture (Bio-
Rad, USA). The reaction mixture per sample contained 5
µL of 1x concentrated iTaq™ Universal SYBR® Green
Supermix, 0.5 µM of each primer, around 50 ng of DNA
template and nuclease-free water to the final volume of 10
µL. All amplification reactions carried out in this study,
both for Legionella and Aeromonas, were done in
triplicates. A negative control was also applied. In
Aeromonas spp. quantification analysis the standard curve
was prepared using quantified genetic material isolated
from sequenced total DNA of Aeromonas spp. (accession
in Sequence Read Archive: PRJNA523334). A. hydrophila
quantification was conducted with reference to standard
curve prepared from genomic DNA of A. hydrophila
ATCC 7966 (Minerva Biolabs, Germany). The numbers
of Aeromonas and Aeromonas hydrophila were calculated
based on the measured DNA concentration and the length
of the genome sequence. Then a tenfold series of dilutions
(ranging from 106–100 cells) were prepared. This was used
to determine both the limit of detection of each assay and
to calculate cells number. The minimal reaction
efficiencies were of 90–100% and 0.997 < R2 < 0.999. All
amplification reactions were performed using a CFX96
Touch™ Real-Time PCR detection system (Bio-Rad,
USA). The reaction run for the quantification of
Aeromonas spp. and A. hydrophila was as follows:
polymerase activation for 5 min at 95°C and 40 cycles
comprising denaturation for 5 sec at 95°C and annealing,
extension and plate read for 30 sec at 60°C. Finally, melt

curve analysis was conducted over a temperature gradient
from 65 to 95°C at 0.5°C increments at 5 sec per step. The
real-time PCR results were analyzed automatically after
entering the standard curve concentrations in the Bio-Rad
CFX Maestro 1.1 software. Then the results were
calculated into cells per milliliter and liter.

Statistical analysis

The analyses consisted of series of statistical test.
Nonparametric Kruskal-Wallis test was used to check if
the lakes were statistically different in terms of amounts
of bacteria. To group the lakes according to the Legionella
and Aeromonas occurrence profile and physicochemical
parameters, two Bray-Curtis based non-metric
multidimensional scaling (NMDS) analyzes were
conducted. In addition, the ANOSIM test was used to
check the differences between seasons. The Kruskal-
Wallis, NMDS and ANOSIM tests were done in Past ver.
3.20 software. To elucidate the relationships between
Aeromonas and Legionella spp. and their environment,
Canonical correspondence analysis (CCA) together with
PERMANOVA test were conducted with using R ver.
3.5.3 and RStudio ver. 1.1.463 software.

RESULTS

The physicochemical parameters of the lake water
measured were averaged across all sampled depths and
locations within sampling area are presented in Tab. S1.
Based on physicochemical parameter values, Bray-Curtis
based non-metric multidimensional scaling (NMDS) was
performed (Fig. 2). The analysis allowed the samples to
be grouped in terms of their physicochemical properties.
First of all, there was a general trend towards grouping
according to sampling season (ANOSIM R=0.4,
P=0.0001). However, the exceptions constituted the
samples from spring season: northern lakes: Przystań,
Mamry, Dargin, Kisajno, and southern lakes: Bełdany and
Śniardwy. The samples from northern lakes, sampled
during spring season (Przystań, Mamry, Dargin, Kisajno),
showed similarity also with northern lakes tested during
summer season (Przystań and Dargin). In turn, the
summer and spring samples from southern part of The
Great Masurian Lakes (GML) system grouped according
to geographic origin. The above indicated therefore the
grouping of samples relative to the geographical location.
In the case of samples taken in autumn, it was also
possible to divide into samples groups from the northern
part of the GML complex, as well as the southern part. A
special case of a water reservoir was Lake Śniardwy - one
of the southernmost of the studied area. Despite
geographical location, it grouped closer to northern
reservoirs - with a lower trophic status. This was
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confirmed in all sampling seasons during the study period.
The trophic state index (TSI) values of the sampling

sites within the GML system were defined using three
variables: Secchi disc visibility, chlorophyll a
concentration, and total phosphorus content, using
Carlson’s equations (Carlson 1977). Based on the
nomenclature for temperate zones, the TSI values in the
studied lakes ranged from oligotrophy/mesotrophy, with
the lowest TSI value in the case of Mamry Lake during
autumn season (TSI~39.4), to eutrophic conditions in the
case of Bełdany Lake during summer season (TSI~60.5).
In most cases, the trophic status of the particular lakes did
not change significantly over the seasons and oscillated
more or less within similar range of eutrophication status.
However, there were exceptions in the cases of 4 lakes.
Dargin lake mean TSI values changed from meso-
eutrophic (TSI=41.9-42.8) to eutrophic (TSI=51.7) in
autumn season. In Kisjano Lake TSI changed from
eutrophic (TSI=52.6) to meso-eutrophic (TSI=43.8) from
summer 2016 to spring 2017 (TSI=almost 50), but
afterwards from spring 2017 to autumn 2017 the TSI
values increased from 41.87 to 49.98 and almost
reconverted. The TSI of Niegocin Lake increased from
mesoeutrophic (TSI=48.2-48.5) state to eutrophic one
(TSI=54.3). In turn, the TSI of Śniardwy Lake increased
significantly from meso-eutrophic state (TSI=42.1) to
eutrophic (TSI=50.5) in autumn. Detailed information

concerning the TSI values of the studied water reservoirs
in individual research seasons are presented in Tab. 1. 

Real-time PCR analysis was used to quantify the
presence of Legionella spp., Aeromonas spp. and
Aeromonas hydrophila in the studied lake water samples -
the results are presented in the Figs. 3 to 5. Legionella
pneumophila was not detected in none of the studied lake.
The Kruskal-Wallis test showed that the differences in the
abundances of the Legionella spp. and Aeromonas spp.
between individual lakes were statistically significant
(P≤0.0001). Based on the number of analyzed bacteria in
all studied samples, Bray-Curtis based non-metric
multidimensional scaling (NMDS) was conducted (Fig. 6).
The grouping of samples was observed in relation to the
research season (ANOSIM R=0.41, P=0.0001) and in
terms of geographical location (ANOSIM R=0.2, P=0.01).

To evaluate the relationship between the water
properties of the lakes at the sampling sites and the
presence of Legionella spp. and Aeromonas spp., a
Canonical correspondence analysis (CCA) was applied
(Fig.7). The CCA1 explains 72% of variability, while
CCA2 explains 2%. Additionally, the PERMANOVA
analysis was performed to check whether the model and
predictors are statistically significant. The analysis
showed that the amount of Legionella spp. is significantly
positively influenced by chlorophyll a concentration, total
phosphorus and nitrogen amount. Moreover, the dissolved

Fig. 2. The Bray-Curtis based non-metric multidimensional scaling (NMDS) of physicochemical water parameters. Stress value = 0.061.
Suffixes added to sampling locations (lake’s names) and marks indicate the studied seasons: _su and red dots, summer; _sp and green
squares, spring;  _a and dark blue triangles, autumn.
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organic carbon concentration and conductivity had a
positive moderate influence on Legionella spp. numbers
in water of Great Masurian Lakes system. The amount of
Aeromonas spp. and Aeromonas hydrophila was
positively correlated with temperature, ammonium
concentration and water transparency. 

DISCUSSION
Based on the results of CCA analysis our studies have

shown that there were clear visible relations between the
presence of Aeromonas and Legionella spp. and water
eutrophication variables, such as phosphorus, nitrogen,

Fig. 3. Legionella spp. cells concentration in studied lakes during summer (a), spring (b) and autumn (c) seasons. Suffixes added to
sampling locations (lake’s names) indicate the studied seasons: _su, summer; _sp, spring;  _a, autumn.

Fig. 4. Aeromonas spp. cells concentration in studied lakes during summer (a), spring (b) and autumn (c) seasons. Suffixes added to
sampling locations (lake’s names) indicate the studied seasons: _su, summer; _sp, spring;  _a, autumn.

Fig. 5. Aeromonas hydrophila cells concentration in studied lakes during summer (a), spring (b) and autumn (c) seasons. Suffixes added
to sampling locations (lake’s names) indicate the studied seasons: _su, summer; _sp, spring;  _a, autumn.
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ammonia and chlorophyll concentrations, conductivity,
turbidity, and water transparency, that was presented by
the results of CCA analysis. This demonstrates that further
eutrophication of the studied lakes of the GML system
can cause serious microbiological risks, both to animals
and human health, which cannot be neglected.

About one hundred years ago, the Great Masurian
Lakes were classified as oligotrophic water reservoirs
(Gieysztor and Odechowska, 1958). During the 1950s
eutrophication began to accelerate significantly as a
consequence of human activity and speeding up of the
urban development (Kauppinen, 2013). Intensification of
agriculture, tourism development and expansion of towns
and villages began significant changes in the surroundings
of the Great Masurian Lakes system as well in the water
reservoirs themselves (Siuda et al., 2020). More than half
of the lakes were supplied with municipal and camping
sewage (Ozimek and Kowalczewski, 1984). According to
Kajak et al. (1975) during the 1970s the Mikołajskie Lake
was highly eutrophicated. During the 1980s the southern
lakes of the system became hyper-eutrophicated.
Regarding northern lakes, with short-term exceptions,
their trophic state was at the meso-eutrophy level. The
main sources of nutrients in their case are tourism and
agriculture (Wołos et al., 2009). In the 1990s especially
in the southern part of Great Masurian Lakes system
trophic state began to descend, because of modernization
of sewage treatment plant that was discarding the effluent

and limiting the inflow of industrial and agricultural
wastewater to Niegocin Lake. Since about 2005 the
oligotrophication decelerated and subsequently even
reversed. Therefore, we are still dealing with the effects
of accelerated eutrophication (Kauppinen, 2005).

The GML system consists of a complex system of
water reservoirs with a wide variety of physicochemical
characteristics. The grouping of similar sampling points
in terms of their physicochemical properties
simultaneously with their proximities in geographical
terms was clearly visible. Sampling site located within
Śniardwy Lake was an exception. It was similar to the
group of northern lakes in terms of physicochemical
properties and in terms of Legionella and Aeromonas spp.
content profile, even though it was one of the most
southern sites studied within the research area. This result
may be due to the significant remoteness of the studied
sites from the rest and the location within a water reservoir
with different characteristics than the neighboring lakes.

The similarities between water reservoirs in term of
physicochemical profile (Fig. 2), at the same time in terms
of the amount of potentially pathogenic microorganisms
(Fig. 6) indicate the significance of environmental factors
related to eutrophication in occurrence of studied bacteria
(Anza et al., 2014). In our studies we observed that in case
of Śniardwy and northern lakes. Śniardwy Lake is
shallow, large lake that, despite the location and strong
anthropopressure is in meso-eutrophic state and its

Fig. 6. The Bray-Curtis based non-metric multidimensional scaling (NMDS) of Legionella spp., Aeromonas spp. and A. hydrophila
number. Stress value = 0.057. Suffixes added to sampling locations (lake’s names) and marks indicate the studied seasons: _su and red
dots, summer; _sp and green squares, spring; _a and dark blue triangles, autumn.
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physicochemical characteristics are similar to those
characterizing northern, less eutrophicated lakes (Siuda
et al., 2020), what was demonstrated in our studies by
non-metric multidimensional scaling (NMDS) analysis.
Additionally, NMDS analysis showed that the lakes
located next to each other have a similar profile of
potentially pathogenic bacteria: Legionella and
Aeromonas spp. This suggests that water is a mediator in
the transmission of pathogens.

The ANOSIM test showed that there are significant
differences regarding the presence of pathogens in the
different sampling seasons. In general, the largest amount
of Legionella and Aeromonas spp. was observed in summer
period, at the peak of the growing season that was also the
peak of the tourist season. That corresponds with the
previous study (Siuda et al., 2020), where during the peak
of tourist season, the substantial amount of pollutants is
generated by the yacht ports and runoffs more than usual.

The results of CCA analysis showed that the presence
of potentially pathogenic Legionella and Aeromonas was
associated with factors being indicators of the trophic
states of the studied lakes (chlorophyll a concentration,
total phosphorus amount, total nitrogen amount,
ammonium concentration, water transparency).
Eutrophication of aquatic environments, which is
manifested by increases in water productivity resulting
from nutrient enrichment, is one of the most visible

examples of negative human impacts to the biosphere
(Smith et al., 1999). Nutrient enrichment interacts with
the ecological stability of a system and determines the
presence of other contaminants, including infectious
disease agents (Smith and Schindler, 2009). The
characterization of the trophic state of an aquatic
ecosystem includes the definition of biogenic substances,
mainly phosphorus, chlorophyll a concentration and water
transparency (Petrucio et al., 2005). The use of three
variables to determine the trophic status in our studies was
justified because it is not always possible to determine the
trophic state of a studied lake with a single variable. For
example, in the case of Mamry Lake, we observed very
low chlorophyll a concentrations indicating an
oligotrophic conditions of a lake, while the turbidity was
quite high and did not result from a large amount of
phytoplankton; moreover, both the transparency and
phosphorus content pointed to a mesotrophic state. 

Chlorophyll a concentration is an indicator of the
abundance of photosynthetic organisms. In lake
ecosystems, photosynthetic organisms are the base of the
food chain and influence the trophic state. Nutrient
content is one of the major factors that regulate
photosynthesis. Hence, these parameters were considered
when determining the index values of the trophic state.
Previous study reported that the trophic conditions of lake
water had significantly positive effects on the total

Fig. 7. Canonical correspondence analysis (CCA) results. The CCA1 explains 72% of variability, while CCA2 explains 2%. Cond,
conductivity (µs cm–2); DOC, dissolved organic carbon (mg L); PO4, orthophosphates amount (µg L–1); Chl, chlorophyll a concentration
(µg L–1), TP, total phosphorus amount (µg L–1); TN , total nitrogen amount (µg L–1); Turbid, turbidity (NTU); Temp, temperature (°C);
O2, oxygen concentration (mg O2L–1); SD, Secchi disc visibility [m]; NH4

+ , ammonium concentration (mg L–1); Leg, Legionella spp.
number (cells L–1); Aero, Aeromonas spp. number (cells L–1); A. hydro, Aeromonas hydrophila (cells L–1).
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numbers of bacteria, HNF (Heterotrophic
Nanoflagellates) and other biotic variables of the Great
Masurian Lake system (Chróst and Siuda, 2006). 

What deserves attention is the effect of ammonium on
the amount of Aeromonas spp. and Aeromonas
hydrophila. Ammonium is a widespread pollutant in
aquatic ecosystems originating directly and indirectly
from human activities, which can strongly affect the
structure and functioning of the aquatic foodweb and
microbial structure (Leoni et al., 2018).

In aquatic environments, autochthonous microflora
can use trace amounts of nutrients. In the case of
allochthonous bacteria, growth deceleration is usually
observed after entering nutrient-poor aquatic
environments. In this adaptive phase, bacteria adjust to
new environmental conditions. The more oligotrophic the
environment, the longer the adaptation time because of
the time needed to reorganize the enzyme systems in the
microbial cells (Jones et al., 2004). Therefore, the higher
the eutrophic status, the shorter the adaptation and growth
restraint time (Nazari-Sharabian et al., 2018).
Consequently, environments more abundant in nutrients
promote the survival and growth of microflora. For this
reason, the pollution of water bodies, introduced with
surface runoffs, related to human recreational activity,
contributes not only to the introduction of allochthonous
pathogenic bacteria but also to their propagation. 

Under unfavorable environmental conditions,
bacterial cells are able to survive by inhibiting their
growth rates and slowing down their metabolism.
Different survival strategies of allochthonous bacteria in
aquatic environments allow for the extension of survival
time, e.g., after temperature decreases. Bacterial cells pass
into the VBNC (viable but not culturable) state that is
characteristic for living but non-cultivable cells, and these
cells also constitute a threat to public health. Bacteria
being in the VBNC state in fact are still virulent (Colwell
2000). Legionella spp. are an example of bacteria, which
commonly enter a VBNC state in water environments.
This state is induced often by nutrient starvation. There is
a huge threat for water reservoirs safety, because
increased trophic state caused by the nutrient supply can
cause a sudden multiplication of these bacteria through
resuscitation (Edagawa et al., 2015; Garner et al., 2018).
VBNC state formation is one of reason for using a
sensitive molecular biology technique, which is real-time
PCR. This method is also justified due to the fact that only
a small part of the bacteria community (approximately
0.1%) inhabiting the environment is cultivable (Cho and
Giovannoni, 2004; Dupont et al., 2014). Moreover,
several studies show that molecular methods are an
advantage over classic cultivation methods (Lleo et al.,
2005; Wade, 2011; Rhoads et al., 2012).

The relation between temperature and the presence of

potentially pathogenic Aeromonas bacteria also deserves
attention. Similar relationships can be observed in other
studies (Jin et al., 2018). This can be particularly
dangerous in the context of climate change and increasing
surface water temperatures (Mujere and Moyce, 2016).

Because nutrient loading, and hence eutrophication,
will become more severe and widespread, eutrophication
will continue to be an important factor in the etiology of
human diseases. Eutrophication is, in fact, a problem that
is very difficult to reverse. In freshwater, nutrients that are
stored in sediments can be rapidly recycled (Johnson and
Carpenter, 2008). This means that de-eutrophication is a
very slow process and a strongly eutrophicated water
reservoir can be a microbiological threat for a long time.
The problem of dependence between trophic status and
the presence of pathogenic bacteria is far-reaching and
requires attention. This is particularly motivated by the
fact, that previous studies have shown that Legionella and
Aeromonas spp. infection is associated with the ability to
thrive and persist in environment as a result of
environmental selection. That is why we have referred the
presence of Legionella and Aeromonas spp. to the
environmental conditions.

The correlation between the studied bacteria and
environmental factors related to anthropopressure causing
eutrophication indicated, that there is justified urgent need
of monitoring microbiological quality of natural waters
and considering different species of microorganisms in
lakes which may cause sanitary and health problems.

CONCLUSIONS

The study showed, that factors related to the
eutrophication of surface waters are related to the
presence of potentially pathogenic bacteria: Legionella
and Aeromonas spp. That is particularly important in
context of the ongoing eutrophication of surface water.
This is the first study aimed to monitor the presence of
those microorganisms over several study seasons in the
waters of the Great Masurian Lakes system. Our findings
suggest that further degradation of the aquatic ecosystem
due to eutrophication constitutes a serious threat to human
and animal health.
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