
INTRODUCTION

Surface air temperature in central Asia has undergone
a striking warming trend (Lioubimtseva, 2004; Chen et al.,
2009) and aridity may also have increased across the region
during the past century. These effects are pronounced in the
western region (Lioubimtseva and Henebry, 2009). The
past century also marked the change from a climate system
dominated by natural influences, to one dominated by an-
thropogenic activities (Brönnimann et al., 2007). Demand
for water also increased during that time, with greater re-
gional industry and agriculture in central Asia (O’Hara,
2000; Saiko and Zonn, 2000; Qi et al., 2005).

Lakes play an essential role in the regional water cycle
and reflect watershed water balance in arid regions (Lamb
et al., 1999; Williams, 1999; Ma et al., 2011a). In arid
central Asia, rapid shrinking of the Aral Sea, Lop Nur,
Manas Lake, and Ebinur Lake reflects regional environ-
mental effects and threatens human livelihoods (Ma et al.,
2011a). For example, the surface area of Ebinur Lake was
reduced from 1107 km2 in 1955 to 428 km2 in 2010. The
exposed land surface became a vast bare solonchak with
large salt deposits, predominantly sodium sulfates. The
northwestern winds blowing from the Dzungarian Gate
move the salt-dust hundreds of kilometers (Abuduwaili et
al., 2008).

Increasing environmental and ecological awareness
led us to explore reliable methods to evaluate the impact
of anthropogenic factors and climatic variability on the
evolution of the lake (Gell et al., 2007; Dearing et al.,
2006). In previous work, Wu and Lin (2004) simply com-
pared lake area with precipitation and agricultural irriga-
tion water demand at decadal resolution. Zhou et al.
(2010) analyzed the correlation between lake area and me-
teorological variables, and concluded that precipitation
was one of the most important factors. In this paper,
macro-economic data were used to describe the anthro-
pogenic impact on lake size, and then, the anthropogenic
and climatic effects on the size of Ebinur Lake were quan-
titatively evaluated.

Regional setting

Ebinur Lake is a shallow, closed lake in arid northwest
China (Fig. 1). The lake has a drainage area of 50,321
km2, including 24,317 km2 of mountainous terrain. Ala
Mountain borders the lake to the north and northwest,
Boertala Valley is to the west, the Jing River pluvial fan
is to the south, and sand dunes around the Kuitun River
are to the east. Mean annual precipitation around the lake
is about 95 mm, whereas annual evaporation is 1315 mm
(Wu et al., 2009). The lake has a maximum water depth
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351A quantitative analysis of anthropogenic and climatic impacts on lake size variation

of 3.5 m and an average depth of 1.2 m. The lake water
has 85-124 g L–1 of total dissolved solids. Ebinur Lake re-
ceives surface water inputs from the Bo and Jing Rivers.
The Ala Mountain pass, northwest of the lake, is a well-
known wind corridor, with wind speeds exceeding 20 m
s–1 on 164 days of the year and maximum wind speeds of
up to 55 m s–1 (Wu et al., 2009; Ma et al., 2011b).

METHODS

Data collection

Ebinur Lake surface-area data are from previous re-
search (Ma et al., 2011b). We interpolated data on lake
surface area to annual resolution using linear interpola-
tion, and used the annual values in the modeling approach.
Climate data recorded at the Jinghe meteorological station
(82°54’ N, 44°37’ E, 321.2 m) were provided by China’s
meteorological data-sharing service. Measured meteoro-
logical variables, and the resolution with which they were
reported, included mean annual precipitation (0.1 mm),
barometric pressure (0.1 hPa), wind speed (0.1 m s–1), an-
nual surface air temperature (0.1°C), water vapor pressure

(0.1 hPa), relative humidity (%), percent sunshine (%) and
sunshine duration (0.1 hour) (Supplementary Tab. 1).

Economic data, used as a proxy for anthropogenic im-
pact, are from the Xinjiang economic statistics yearbooks.
Economic variables included population (104 persons),
gross domestic product (GDP) [104 CNY, 1 CNY (Chi-
nese Yuan)=0.16 USD (US Dollar)], the primary industry
(104 CNY), secondary industry (104 CNY) and tertiary in-
dustry (104 CNY), total investment in fixed assets (104

CNY), total sown area of farm crops (103 ha), total sown
area of food crops (103 ha), food production (103 kg), cot-
ton production (103 kg) and oil crops production (103 kg)
(Supplementary Tab. 2).

Quantitative analysis: a multivariate linear model

Multivariate regression was used to distinguish be-
tween climatic and anthropogenic impacts on observed
lake surface area fluctuation in the past 50 years (eq. 1).
The standard linear regression model assumes the value
of Y has a linear form with the set of predictor variables
(X1, X2, X3…, Xp), as follows:

Fig. 1. Location of Ebinur Lake (a) and its watershed in northwest China (b).
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352 L. Ma et al.

Y=f(X1, X2, X3…, Xp)=
β0+β1 X1+X2β2+X3β3+…+Xpβp

(eq. 1)

The surface area of Ebinur Lake was the dependent
variable Y (Fig. 2). For a closed lake, hydrologic inputs
included direct precipitation, stream and groundwater in-
flows. Outputs were evaporation and transpiration. In the
Ebinur Lake catchment, there were insufficient hydrolog-
ical data to complete a water balance analysis; conse-
quently, hydrology was accounted for indirectly using
climate and economic data. Industrial demand and agri-
cultural irrigation in the catchment increase water con-
sumption and reduce runoff, which directly affects lake
surface area. We captured this economic development in
economic data published by the government.

We used principal component analysis (PCA) (Pardo
et al., 1990) of the climatic and economic data to find
the latent variables (X1, X2, X3…, Xp) to explain the orig-
inal variance and to simultaneously reduce the dimen-
sionality of the dataset. We completed the PCA for
climatic and economic variables separately to reduce the
number of variables and extract latent variables for mul-
tivariate regression. The extracted climatic and eco-
nomic variables, however, have some degree of
correlation. We used partial least squares (PLS) model-
ing to eliminate potential collinearity among the inde-
pendent, latent variables (X1, X2, X3…, Xp). PLS was
first introduced by H. Wold (1975) under the name NI-
PALS (nonlinear iterative partial least squares), which
focuses on maximizing the variance of the dependent
variables explained by the independent ones, instead of
reproducing the empirical covariance matrix (Haenlein
and Kaplan, 2004). A PLS model consists of a structural
part, which reflects the relationships between the latent
variables, and a measurement component, which shows
how the latent variables and their indicators are related;
but it also has a third component, weight relations, which

are used to estimate case values for the latent variables
(Chin and Newsted, 1999). Haenlein and Kaplan (2004)
provided a comprehensible introduction to this tech-
nique. Partial least squares regression analysis is appro-
priate when the matrix of predictors has more variables,
and when there is multi-collinearity among X values. By
contrast, standard regression will fail in these cases. PLS
regression was achieved using the Unscrambler software
package (CAMO ASA, 1997). We completed PCA
analysis and linear interpolation in R STATS packages
(R Core Team, 2012).

Assessment indices for the multivariate linear model

We used the Nash-Sutcliffe efficiency (NSE) ratio
(Nash and Sutcliffe, 1970) of the root mean square error
to the standard deviation of measured data (RSR), and
percentage bias (PBIAS) to evaluate the model (Moriasi
et al., 2007). They are as follows:

(eq. 2)

(eq. 3)

(eq. 4)

where Xi,
^Xi, X̄ and n are, respectively, the observed value,

the predicted value, the mean value of the observed data,
and the number of observations. The theoretical range of
NSE is from −∞ to 1, with NSE=1 being the optimal
value. Values between 0.0 and 1.0 are generally viewed
as acceptable levels of performance, whereas values <0.0
indicate that the mean observed value is a better predictor
than the simulated value, which indicates unacceptable
performance. The RSR varies from the optimal value of
0, which indicates zero root mean square error (RMSE),
or residual variation, and therefore perfect model simula-
tion, to a large positive value. Lower RSR implies lower
RMSE and better model simulation performance (Moriasi
et al., 2007). The PBIAS measures the average tendency
of the simulated data to be larger or smaller than their ob-
served counterparts. The optimal value of PBIAS is 0.0,
with low values indicating accurate model simulation
(Gupta et al., 1999).

Fig. 2. Change in surface area of Ebinur Lake over the past 50
years.
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RESULTS

Variation of lake surface area over the past 50 years

The evolution of the lake was divided into four periods
(Fig. 2). During the first period, which ended in 1975, the
lake shrank sharply. In the second period (1975-1995),
lake area was relatively stable and was 476 km2 in 1995.
The lake had an historically large area of 915 km2 in 2003,
and subsequently decreased to 428 km2 in 2010.

Latent variables extracted from the climate
and economic data

Four climate factors accounted for 93% of the total
variance in the PCA (Tab. 1). The remaining factors did
not contribute significantly to information in the data ma-
trix. The first factor (PC1_climate), spanning 49% of the
variance, was related well to precipitation, wind speed,
water vapor pressure, relative humidity, percent sunshine
and sunshine duration. Temperature and station pressure
were significantly correlated with PC2_climate. PC3_cli-
mate and PC4_climate accounted for 13% and 9% of total
variance, respectively. The four principal components, as
independent variables (X1, X2, X3 and X4) in the multi-
variable linear model, represented climate change over
the past 50 years (Supplementary Tab. 3).

Three social and economic factors accounted for 95%
of total variance and the remaining factors were not signif-
icant (Tab. 2). PC2_human and PC3_human accounted for
18% and 7% of total variance, respectively. PC1_human
accounted for 70% of total variance, and was positively
correlated with population, gross domestic product, primary
industry, secondary industry, tertiary industry, total invest-

ment in fixed assets and total sown area of farm crops. The
three principal components, as independent variables (X5,
X6 and X7) in the multivariable linear model, represented
human activities (Supplementary Tab. 3).

Assessment of the multivariate linear model

In our model, parameters X1, X2,…, X7 extracted from
the PCA, were assigned to the independent variables, and
lake area was assigned to the dependent variable (Y) (Sup-
plementary Tab. 3). The best match between the observed
lake-surface area and the model predicted value is shown
in Fig. 3. The regression coefficients (β1, β2, β3…, β7) were
21.83, -35.64, -30.11, -4.458, -47.57, -132.86 and -69.02,
respectively. We use equation (5) to calculate the standard
error of the estimate (SE).

(eq. 5)

here Y is an observed score, Y’ is a predicted score, and
N is the number of pairs of scores. The standard error of
the estimate (SE) was 78.42. There was a good linear cor-
relation between the predicted values and the original lake
area data (r=0.87, P<0.01). All correlation coefficients
were significant at the P<0.01 level; the predicted surface
area data were significantly correlated with observed data.

Model assessment indices were NSE=0.76, RSR=0.49,
and PBIAS=0. Based on general performance ratings for
recommended statistics (Tab. 3) (Moriasi et al., 2007), our
model was very good and the reconstructed annual surface
area of Ebinur Lake was described well by the model.

Tab. 1. Total variance explained and component matrixes (four factors selected) for climate data.

Vector Initial Eigenvalues

Eigenvalue Total variance (%) Cumulative (%)

1 3.91 48.90 48.90
2 1.76 21.98 70.88
3 1.08 13.45 84.33
4 0.70 8.71 93.04
5 0.28 3.45 96.49
… … … …

Component matrixes
PC1_climate (X1) PC2_climate (X2) PC3_climate (X3) PC4_climate (X4)

Precipitation 0.78 -0.04 0.39 -0.34
Barometric pressure 0.49 0.73 -0.13 0.27
Wind speed -0.62 0.34 0.33 -0.58
Temperature 0.02 -0.95 0.09 0.03
Water vapor pressure 0.76 -0.27 0.52 0.21
Relative humidity 0.81 0.34 0.38 0.07
Percent sunshine -0.86 0.10 0.43 0.26
Sunshine duration -0.85 0.10 0.44 0.25

Extraction method: Principal Component Analysis.
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Contribution of climate change and human activities
to change in the surface area of Ebinur Lake

We define a comprehensive climatic factor as
Φclimate=β1X1+X2β2+X3β3+X4β4, and a comprehensive an-
thropogenic factor as Φhuman=β5X5+X6β6+X7β7. A change in
the surface area of Ebinur Lake can be calculated as fol-
lows: ΔEpredicted=E2_average-E1_average, where ΔEpredicted is the
predicted surface area change between two different stages,
E1_average is the average lake surface area during the refer-

ence stage, and E2_average is the average annual surface area
during the following stage. The change in lake area was
also estimated as follows: ΔEpredicted=ΔΦ̄climate+ΔΦ̄human, the
impact of climatic change on lake surface area
ΔΦ̄climate=Φ̄climate–2-Φ̄climate–1, where Φ̄climate–1 is the average
value of Φclimate during the reference stage, and Φ̄climate–2 is
the average value of Φclimate during the following stage.
The impact of human activities on lake surface area
ΔΦ̄human=Φ̄human–2-Φ̄human–1, where Φ̄human–1 is the average

Tab. 2. Total variance explained and component matrixes (three factors selected) for human activity.

Vector Initial Eigenvalues

Eigenvalue Total variance (%) Cumulative (%)

1 7.68 69.77 69.77
2 1.98 18.02 87.79
3 0.76 6.92 94.72
4 0.37 3.35 98.06
… … … …

Component matrixes

PC1_human (X5) PC2_human (X6) PC3_human (X7)

Population 0.76 0.60 -0.14
Gross domestic product 0.99 -0.05 0.11
Primary industry 0.97 -0.02 0.15
Secondary industry 0.97 -0.01 0.20
Tertiary industry 0.98 -0.10 0.01
Total investment in fixed assets 0.97 -0.14 0.18
Total sown area of farm crops 0.93 0.29 0.13
Food crops -0.63 0.06 0.75
Food production -0.17 0.91 -0.11
Cotton production 0.98 0.02 -0.13
Oil crops production -0.30 0.82 0.16

Extraction method: Principal Component Analysis.

Fig. 3. Comparison of the surface area of Ebinur Lake, predicted by our model, with the observed surface area.
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355A quantitative analysis of anthropogenic and climatic impacts on lake size variation

value of Φhuman during the reference stage, and Φ̄human–2 is
the average value of Φhuman during the following stage.
When compared to the reference stage of 1955-1960, the
impacts of climate change across the catchment were gen-
erally positive for Ebinur Lake except during the 1961-
1970 stage (Tab. 4). Based on our model, climate change
increased annual lake area by 50.6 km2, 22.8 km2, 12.6
km2 and 38.2 km2 in the 1970s, 1980s, 1990s and 2000s,
respectively. The impacts of human activities increased
during the 1960s, 1970s and 1980s (Tab. 4, ΔΦ̄human).
Compared with previous stages, anthropogenic impacts
on lake variation decreased from 1991 to 2010 (a positive
value for ΔΦ̄human in 1990s and 2000s).

DISCUSSION

Regression coefficients for the climate and economic
variables were (β1=21.83, β2=-35.64, β3=-30.12, β4=-4.46,
β5=-47.57, β6=-132.86, and β7=-69.02). Among the PCA-
extracted economic variables, X6 had the greatest weight
coefficient and reflected the change in food production.
Water demand for agricultural irrigation was the main fac-
tor for water consumption in the Ebinur Lake watershed.

The surface area of Ebinur Lake shrank from 2330
km2 ca. 4.5 ka BP to 1107 km2 in 1955, whereas the lake
shrank from 1107 km2 in 1955 to 428 km2 in 2010 (Ma et
al. 2011a). Sayram Lake is another lake in the Ebinur
Lake catchment. There are no residential villages or agri-
cultural development around Sayram Lake. The surface
area of Sayram Lake was relatively stable from 1960
(443.9 km2) to 1987 (448.3 km2). In 1988, the lake area
increased to 459 km2 and has remained high since then

(Wu and Ma, 2011). Human activity was responsible for
Ebinur Lake shrinking by 286.8 km2 over the past half
century. Assuming only climate impacts on lake variation
(i.e., no human activities in the watershed), the lake would
have expanded from 873.3 km2 in the 1960s to 973.2 km2

in the 2000s. On 1 October 1955, the Xinjiang Uygur Au-
tonomous Region was established, opening new possibil-
ities for development in Xinjiang. During the past half
century, Xinjiang’s economy has advanced rapidly, as has
its social undertakings. Although climatic conditions
alone would have led to a 99.8 km2 increase in lake sur-
face area, intensive human activities in the catchment over
the past 50 years led to the shrinkage of Ebinur Lake.

Although our model works well in terms of assess-
ment statistics, the model could be improved. In some
years, not all data were measured, and we estimated these
missing values by linear interpolation. Of the 56 data
points for lake surface area in the model, only 20 were
measured directly. Consequently, the climate and eco-
nomic variables cannot exactly reflect lake surface area,
and this effect partly explains the difference between the
observed and predicted values for lake surface area.

For Ebinur Lake, precipitation, stream input, ground-
water inflow, evaporation and transpiration were direct
factors influencing lake surface area. These factors were
indirectly influenced by interactions between climate and
human activities. Moreover, the internal mechanisms that
determine how climatic and economic variables influ-
enced lake size were complex and can only be expressed
by linear mathematical formulas. These all affect our
model for estimating lake surface area.

Tab. 3. General performance ratings for recommended statistics from Moriasi et al. (2007).

Performance rating RSR NSE PBIAS (%)

Very good 0.00 ≤ RSR ≤ 0.50 0.75 < NSE ≤ 1.00 PBIAS < ±10
Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15
Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25
Unsatisfactory RSR > 0.70 NSE ≤ 0.50 PBIAS ≥ ±25

RSR, root mean square; NSE, Nash-Sutcliffe efficiency; PBIAS, percentage bias.

Tab. 4. Contribution of climate change and human activities to change of Ebinur Lake surface area.

Stages Periods (AD) Ēi (km2) ΔĒ °(km2) ΔΦ̄climate
# (km2) ΔΦ̄human

§ (km2)

1 1955-1960 873.3 - - -
2 1961-1970 735.0 -138.3 -24.3 -114.0
3 1971-1980 541.2 -193.8 50.5 -244.4
4 1981-1990 530.9 -10.3 22.8 -33.1
5 1991-2000 566.4 35.5 12.6 22.9
6 2001-2010 686.3 119.9 38.2 81.7
Sum - - -187.0 99.8 -286.8
°ΔĒ =Ēi+1-Ēi,ΔĒ =ΔΦ̄climate+ΔΦ̄human; #ΔΦ̄climate=Φ̄climate(i+1)-Φ̄climate(i); §ΔΦ̄human=Φ̄human(i+1)-Φ̄human(i)
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CONCLUSIONS

Economic variables were used as proxies for anthro-
pogenic impact on Ebinur Lake size. Seven independent
variables were extracted from a larger set of variables
using Principal Component Analysis (PCA), which ac-
counted for 93% and 95% of climate and economic de-
velopment variation, respectively.

A multivariate regression with the principal compo-
nents as independent variables was conducted and was
used to distinguish between climate and anthropogenic
impacts on the lake surface area. There was a good linear
correlation between the predicted and observed data
(r=0.87, P<0.01). We conclude that human activity was
responsible for the lake surface area reduction of 286.8
km2 over the past half century. In the absence of human
activities in the watershed, climate conditions would have
led to a 99.8 km2 increase in lake surface area.
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