
J. Limnol., 2014; 73(1): 167-176 ORIGINAL ARTICLE
DOI: 10.4081/jlimnol.2014.801

INTRODUCTION

Although large reservoirs play an important role in
promoting economic and social development and provide
important services such as electricity generation, water
supplies, flood control, assistant navigation, it has been
well known that dam construction will affect the flow ve-
locity, water temperature, sediments delivery, dissolved
oxygen, water level, salinity of river systems, and aquatic
ecosystems. During the past decades, many studies have
focused on the effects of dam construction on the water
environment and aquatic ecosystems (Karr, 1991; Nilsson
and Berggren, 2000).

Mekong River is the sixth largest river in the world. It
contains a large number of endemic species, and overall
high level of biodiversity. The upstream of the upper
Mekong River has an average gradient of 1.5‰ and the
middle and the downstream from 0.8‰ to 1‰ so the river
has a huge potential energy by electricity output. Nowa-
days, there have been two completed hydropower dams
(Manwan dam and Dachaoshan dam) on the middle reach
of the Lancang River as well as several more dams and
storage reservoirs for hydropower production under con-

struction and in planning (Wei et al., 2009). Since
Mekong River plays an extremely important role in the
economic and social development of China, Myanmar,
Laos, Thailand, Vietnam and Cambodia, the issue of dam
construction on Mekong River has became a major eco-
logical concern in these countries. So far, the studies have
been performed mainly focused on hydrology, water re-
sources, and sediments (He et al., 2006). As for the eco-
environment of the upper Mekong River, only a few
reports considered the fish (Kang et al., 2009), nutrients
distribution (Wei et al., 2009) and phytoplankton (Wang
et al., 2004).

Xiaowan power station is the second power station in
the planned eight dams. The reservoir covers an area of
189.1 Km2. The Xiaowan hydropower construction began
in October 2004 and water began to fill the reservoir on
December 2008. Such a large dam must have important
effects on the ecosystems of upper Mekong River. How-
ever, the potential effects of reservoir on the aquatic
ecosystems are still relatively unexplored in this important
international river. Although there were some studies on
other reservoirs such as Three-Gorge Reservoir, it is dif-
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vironment. More attention should be paid on the aquatic ecosystems of the reservoirs which belong to the gorge area with high mountains
and steep valleys.
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ficult to apply these results in the upper Mekong River
since the reservoirs in upper Mekong River belong to the
gorge area with high mountains and steep valleys.

Zooplankton are widely distributed organisms in
freshwater lakes, they are consumers of phytoplankton,
and are also the main prey of fish especially the planktiv-
orous fish (Scheffer, 1999). Zooplankton are sensitive to
environmental factors such as nutrients, depths, current
velocity, pH, salinity, dissolved oxygen (Kelderman,
1984; Schulz and Sterner, 1999; Bigler et al., 2006; Plath
and Boersma, 2001). Therefore, they are useful indicators
to assess the effects of reservoir construction on aquatic
ecosystems (Humborg et al., 1997; Lancelot et al., 2002;
Nogueira, 2001). The present study will investigate the
temporal and spatial patterns of zooplankton in Xiaowan
Reservoir, and the possible factors that may relate to these
spatial and temporal variations will be interpreted. The re-
sults will offer some insight into the aquatic ecosystems
response to the dam construction in this international
river, as well as provide ecological datasets for further
modelling studies. 

METHODS

Reservoir description

The upper Mekong River flows to the South China
Sea along the south and east directions crossing six na-
tions. This international river has a total length of 4880
km from the headwaters to its mouth and nearly half flows

through Yunnan Province in China. Xiaowan hydropower
station, with an installed capacity of 4200 MW, is located
in the middle reach of upper Mekong River. The backwa-
ter of upper Mekong River is 178 km, with a tributary of
Heihui River (Fig. 1). Most of the mountain peaks nearby
the reservoir are higher than 2200 m above sea level. The
reservoir climate belongs to subtropical low latitude
mountain monsoon climate, with an annual average tem-
perature of 19°C in the valley, and about 10°C in the
mountainous area on the top of the slope. The total storage
capacity of Xiaowan Reservoir is about 150×108 m3, with
a dam height of 292 m.

Field sampling

Fieldwork was undertaken from September 2011 to
September 2012. The samples were collected monthly ex-
pect for December 2011 and May 2012. Five sites were
selected along the 30 km away from the dam (Fig. 1). The
water samples were collected at depths of 0.5 m. Water
temperature, conductivity, turbidity, dissolved oxygen
(DO) were measured with a multi-parameter water quality
sonde 6600 (Yellow Spring Instruments, Yellow Springs,
OH, USA). Total nitrogen (TN) and total phosphorus (TP)
were analyzed by the Chinese standard methods for Lake
Eutrophication surveys (Jin and Tu, 1990). Three replicate
measurements of subsamples from each sample were per-
formed. Chl-a was collected on a GF/C filter and ex-
tracted with 90% acetone was measured using the method

Fig. 1. The upper Mekong River watershed in Yunnan Province (A) and the sampling sites in Xiaowan Reservoir (B).
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described by Ye et al. (2012). Metazooplankton samplings
were collected using plankton nets of 40 and 60 μm mesh
for rotifers and crustaceans, respectively, through vertical
hauls of the entire water column. Twenty L water samples
were collected and filter to 30 mL by 40 μm mesh for
quantitative analysis of zooplankton. The samples were
fixed with formaldehyde to a final concentration of ap-
proximately 4%. Zooplankton was counted and identified
microscopically in a counting chamber according to the
procedures described in Harris et al. (2000). The zoo-
plankton were identified to species based on the Methods
for Freshwater Plankton (Zhang and Huang, 1991) and
the Fauna Sinica (Jiang and Du, 1979). All taxa were iden-
tified down to the lowest possible taxonomic level.

Statistical analysis

Data in the present study were presented as mean
±SD. Statistical analysis was performed using SPSS 14.0.
Zooplankton communities and environment relations
were studied using CANOCO software version 4.5 (Bio-
metris, Wageningen, The Netherlands). A preliminary de-
trended correspondence analysis (DCA) with detrending
by segments showed that the values of extracted gradient
lengths in the data were always less than 4 standard devi-
ation units (Ter Braak and Smilauer, 2002). Linear re-
sponses are expected along such a gradient, and the
constraining ordination method used was redundancy
analysis (RDA). The contour maps were produced using
Surfer 8.0 with the Kriging method. The other figures
were produced using Origin 8.0.

RESULTS

Water quality in the reservoir

The physical parameters at the five sampling site are
shown in Fig. 2. The water temperature varied from 17.1
to 28.2°C with the maximum value in September 2011
and the minimum value in February 2012 (Fig. 2a). The
dissolved oxygen fluctuated during the sampling period,
ranging from 5.5 to 9.2 mg L–1 (Fig. 2b). The conductivity
varied from 0.28 to 0.37 mS cm–1. From October 2011 to
March 2012, the conductivity generally decreased with
the distance from the Xiaowan dam. In the July and Au-
gust 2012, the conductivity increased with the distance
from the dam. In the spring and autumn, the differences
of the conductivity among the five sampling sites were
less obvious (Fig. 3a). The sampling area in the reservoir
is in clear water state, and the turbidity varied between
0.01 and 6.95 Ntu. The turbidity was higher from April to
August and showed lower values from September to
March. The highest turbidity was recorded at the site 1 in
June 2012 (Fig. 3b). The Chl-a undergone typical sea-
sonal changes characterized by a clear decrease during au-
tumn and winter following an increase during spring and

summer. The highest Chl-a content appeared in June at
site 4 with the value of 10.9 µg L–1 (Fig. 3c). The total ni-
trogen and total phosphorus contents are shown in Fig. 4.
The TN contents were relatively higher during November
to March at the five sites, which were similar to the con-
ductivity. The total phosphorus content varied from 0.02
to 0.06 mg L–1, with a mean value of 0.04 mg L–1. The
total phosphorus decreased from October to February and
then gradually increased from much to July. 

In order to reveal the relationship between the meas-
ured water quality parameters, the variations of the water
quality parameters were evaluated correlation matrix
using the Spearman non-parametric correlation coefficient
(Spearman’s R). The correlation matrix was shown in
Tab.1. Some clear hydrochemical relationships can be
readily inferred: Significantly positive correlation can be
observed between temperature, TP, Chl-a and turbidity,
while the TN significantly negative correlated with TP,
temperature and turbidity.

Fig. 2. Temporal variations of temperature (a) and dissolved
oxygen (b), at different sites.
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Zooplankton structure 
In the reservoir, zooplankton can reach high values

about 600 ind. L–1, 4 mg L–1. The species of zooplankton
recorded at different sampling periods were shown in
Tab. 2. The principal microcrustacean species include
copepds (mostly nauplius, Microcyclops varicans, Meso-
cyclops leuckarti, Limnoithona sinensis, Schmackeria in-
opinus), and cladocerans (Bosmina coregoni, Daphnia

hyalina, Daphnia pulex, Diaphanosoma brachyurum).
The great parts of these organisms are typical of lacus-
trine zooplankton communities. The other principle
species of rotifers are Brachionus budapestiensis, Ker-
atella valga, Polyarthra trigla, Asplanchna brightwellii,
Polyarthra trigla, Keratella cochlearis, Ploesoma hud-
soni. The dynamics of rotifers in the reservoir varied
considerably with both season and sampling sites. The

Fig. 3. Temporal and spatial variations of (a) conductivity (mS cm–1), (b) turbidity (Ntu) and (c) Chl-a (μg L–1).
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rotifers densities (Fig. 5a) and biomass (Fig. 5b) were
lowest during the winter (November and January) and
highest values were found during the summer and early
autumn period (June-September). The highest biomass
of rotifers appeared in August 2012 at site 5, with the
Asplanchna brightwellii accounting for 98% of the ro-

tifers biomass. The higher wet biomass in the June at site
4 and that in the September 2012 at site 1 was caused by
the distribution of Asplanchna brightwellii (data not
shown), which was much larger than other species such
as Keratella cochlearis and Polyarthra trigla. As shown
in Fig. 6, the Cladoceran communities showed seasonal

Fig. 4. Temporal and spatial variations of (a) total nitrogen (mg L–1) and (b) total phosphorus (mg L–1).

Tab.1. Correlation matrix showing r-values of mean data for the sampling sites.

TN TP Chl-a Temperature Conductivity DO Turbidity

TN 1.00
TP -0.34* 1.00
Chl-a -0.45** 0.40 ** 1.00
Temperature -0.40** 0.53** 0.68** 1.00
Conductivity 0.12 -0.40 ** -0.44 ** -0.65** 1.00
DO 0.22 0.26 -0.07 0.04 -0.26 1.00
Turbidity -0.31* 0.46 ** 0.50** 0.44** -0.24 0.25 1.00

TN, total nitrogen; TP, total phosphorus; DO, dissolved oxygen. *P<0.05; **P<0.01.
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fluctuation during the sampling period both in densities
(Fig. 6a) and wet biomass (Fig. 6b). The most dominant
specie was Bosmina coregoni. The Daphania spp. were
observed relative high number in November 2011 at site
3, and thus accounted for the high wet biomass of Clado-
cera in this sample (Fig. 5b). However, the number of
these large-sized Cladocera has been rarely observed in
other samples. Consequently, the wet biomass of Clado-
cera showed a similar to its density. The average densi-
ties of the Copepoda were less than 150 ind L–1 (Fig. 7a).
During the sampling period, the numbers of nauplius ac-
counted for about 50% of the Copepoda communities.
The Copepoda also showed obvious seasonal pattern
throughout the year, but did not show clear difference
among the sampling sites. The highest wet biomass of
Copepoda in September 2011 at site 1 due to that large-
sized Sinocalanus dorrii consists of 56% of the total bio-
mass (Fig. 7b). Redundancy analysis was used to

Ta
b.

 2
.M

et
az

oo
pl

an
kt

on
 a

pp
ea

re
d 

in
 X

ia
ow

an
 R

es
er

vo
ir 

at
 d

iff
er

en
t s

am
pl

in
g 

pe
rio

ds
.

Se
p-

20
11

O
ct

-2
01

1
N

ov
-2

01
1

Ja
n-

20
12

Fe
b-

20
12

M
ar

-2
01

2
A

pr
-2

01
2

Ju
n-

20
12

Ju
l-2

01
2

A
ug

-2
01

2
Se

p-
20

12

Co
pe

po
da

 S
in
oc
al
an
us
 d
or
rii
 

S.
 d
or
rii
 

S.
 d
or
rii
 

S.
 d
or
rii
 

S.
 d
or
rii

S.
 d
or
rii

S.
 d
or
rii

L.
 si
ne
ns
is

S.
 d
or
rii

S.
 d
or
rii

S.
 d
or
rii

Sc
hm

ac
ke
ria

S.
 in
op
in
us

L.
 si
ne
ns
is

S.
 in
op
in
us

S.
 in
op
in
us

S.
 in
op
in
us

in
op
in
us

L.
 si
ne
ns
is

L.
 si
ne
ns
is

L.
 si
ne
ns
is

L.
 si
ne
ns
is

Li
m
no
ith

on
a

sin
en
sis

Cl
ad

oc
er

a
D
ap
hn
ia
 h
ya
lin

a
D
. h
ya
lin

a
D
. h
ya
lin

a
D
. h
ya
lin

a
M
. m

ac
ro
co
pa

D
. p
ul
ex

D
ia
ph
an
os
om

a
M
oi
na
 

br
ac
hy
ur
um

m
ac
ro
co
pa

Ro
tif

er
s
Br
ac
hi
on
us
 a
ng
ul
ar
is

B.
 b
ud
ap
es
tie
ns
is
B.
 b
ud
ap
es
tie
ns
is

K.
 va

lg
a

B.
 b
ud
ap
es
tie
ns
is

B.
 b
ud
ap
es
tie
ns
is

B.
 b
ud
ap
es
tie
ns
is

As
pl
an
ch
na

B.
 b
ud
ap
es
tie
ns
is

B.
 a
ng
ul
ar
is

B.
 a
ng
ul
ar
is

Br
ac
hi
on
us
 fa
rfi
cu
la

K.
 co

ch
le
ar
is

K.
 va

lg
a

K.
 co

ch
le
ar
is

K.
 co

ch
le
ar
is

Co
no
ch
ilu

s d
os
su
ar
iu
s

br
ig
ht
we

lli
i

P.
 tr
ig
la

B.
 b
ud
ap
es
tie
ns
is

B.
 b
ud
ap
es
tie
ns
is

Br
ac
hi
on
us
 b
ud
ap
es
tie
ns
is

K.
 va

lg
a

Tr
ic
ho
ce
rc
a 
sp
p.

K.
 va

lg
a

K.
 va

lg
a

K.
 co

ch
le
ar
is

C.
 d
os
su
ar
iu
s

K.
 co

ch
le
ar
is

A.
 b
rig

ht
we

lli
i

A.
 b
rig

ht
we

lli
i

Po
ly
ar
th
ra
 tr
ig
la

P.
 h
ud
so
ni

P.
 h
ud
so
ni

Tr
ic
ho
ce
rc
a 
sp
p.

K.
 va

lg
a

K.
 co

ch
le
ar
is

K.
 va

lg
a

P.
 tr
ig
la

Po
ly
ar
th
ra
 tr
ig
la

Ke
ra
te
lla

 co
ch
le
ar
is

P.
 h
ud
so
ni

Tr
ic
ho
ce
rc
a 
sp
p.

Tr
ic
ho
ce
rc
a 
sp
p.

Tr
ic
ho
ce
rc
a 
sp
p.

K.
 va

lg
a

C.
do
ss
ua
riu

s
Ke

ra
te
lla

 va
lg
a

P.
 h
ud
so
ni

P.
 h
ud
so
ni

P.
 h
ud
so
ni

Tr
ic
ho
ce
rc
a 
sp
p.

K.
 co

ch
le
ar
is

Pl
oe
so
m
a 
hu
ds
on
i

K.
 va

lg
a

Tr
ic
ho
ce
rc
a 
sp
p.

P.
 h
ud
so
ni

M
ic

ro
cy

cl
op

s v
ar

ic
an

s, 
M

es
oc

yc
lo

ps
 le

uc
ka

rti
, n
au
pl
iu
s (
Co

pe
po
da
 ) 
an
d 

Bo
sm

in
a 

co
re

go
ni
(C
la
do
ce
ra
) w

er
e r

ec
or
de
d 
at
 a
ll 
m
on
th
s.

Fig. 5. Temporal variations of rotifer densities (a) and wet bio-
mass (b) at different sites.
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ascertain the relationships between environmental vari-
ables and zooplankton communities (Fig. 8). The first
ordination axis explains 49.5% while the second ex-
plains 25.6% of the total variance. The cosines of angles
between environmental and zooplankton communities
vectors reflect their relationships. From Fig. 8, it could
be established that the temperature is highly positively
related to the zooplankton communities, except for the
densities of rotifers. The TP, turbidity, and Chl-a also are
positively related to zooplankton communities, while TN
and conductivity are negatively related to zooplankton
communities. 

DISCUSSION

Xiaowan Reservoir is located in the middle of the
upper Mekong River. There were few reports to the phy-
toplankton in the upper Mekong River. It is well known
that temperature affects the Chl-a contents and our results

fit this pattern. The mean Chl-a content was only about 1
µg L–1 from January to March and was much lower than
that from June to September 2013. 

The conductivity was higher in winter than other pe-
riod. This maybe related to the lower flow in the winter
because the watershed has almost no precipitation during
the dry season (November to April), and the runoff from
headwater was low for similar reason. In aquatic systems,
the higher flows appear to dilute dissolved material, as
reflected by lower conductivity, and this finding is con-
sistent with the results of lower Mekong River (Irvine et
al., 2011; Prathumratana et al., 2008). In the Xiaowan
Reservoir, the runoff generation process is supposed to
create the suspended sediments since the effect of the rel-
atively low Chl-a content on turbidity (algae turbidity)
was minimal (Xu et al., 2011). This speculation is sup-
ported by the variation in the DO concentration, although
this concentration is not only affected by the turbulence
which caused by high flow. It is not surprising that DO is

Fig. 6. Temporal variations of Cladocera densities (a) and wet
biomass (b) at different sites.

Fig. 7. Temporal variations of Copepoda densities (a) and wet
biomass (b) at different sites.
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greatest during the higher flow months (June and July),
as greater turbulence and freshwater runoff would serve
to boost oxygen levels (Prathumratana et al., 2008). The
DO curve shapes varied from month to month and showed
similar patterns at different sites. Higher contents of TP
in the June and July suggested that TP came mainly from
surface runoff. The TN was negatively correlated with TP,
which means that higher TN concentration appeared in
winter. The possible explanation is that weaker nutrient
demand of reduced phytoplankton growth under lower
temperature conditions (Lomas and Glibert,1999). It
should be mentioned that the TN and TP were relative
high since the contents are sufficient to sustain high levels
of phytoplankton (Guildford and Hecky, 2000). 

All the zooplankton communities showed typical sea-
sonal changes throughout the study period. It is well known
that the food availability has important effects on zooplank-
ton communities. The zooplankton numbers were greatly
increased by elevated phytoplankton levels (Vanni, 1987;
Lampert, 1987). Although some reports found that the ro-
tifers were in their maximum numbers in winter (Thiru-
pathaiah et al., 2012), the most zooplankton communities
including Cladocera and Copepoda communities were
lower in densities in autumn and winter (Wolfinbarger,
1999). In present study, the redundancy analysis showed the
temperature played the most important role in determining
of the zooplankton communities (Fig. 8). This could be ex-
plained by the combined effects of zooplankton physiolog-
ical limitations and the low phytoplankton growth in winter.
Compared with other eutrophic reservoirs in China (Lin et

al., 2003), the Chl-a contents in the Xiaowan Reservoir dur-
ing winter were still low (<1 µg L–1). Several authors re-
ported that the rotifer were richest in the number of
individuals in reservoir (Nogueira, 2001; Seda and Devetter,
2000). The success of limnetic rotifers in newly constructed
reservoir can be related to their feeding plasticity and their
opportunist characteristics (Nogueira, 2001). In newly con-
structed reservoirs, the rotifers in the upper regions of reser-
voirs were more abundant than the downstream parts (Seda
and Devetter, 2000). In present study, the sampling sites lo-
cated in the downstream parts and belonged to the lake-
type. The limnological characteristics which were similar
to lakes may explain that the rotifers were not most abun-
dant in the densities. The considerable fluctuation of the ro-
tifers possibly due to the rapid population growth during
short favorable conditions and therefore the rotifers densi-
ties were not significantly positively associated with tem-
perature and Chl-a. Some Daphnia spp. were found in low
abundance in the present study. This large-sized Daphnia
is preferentially consumed by planktivorous fishes. It is dif-
ficult to discuss the changes of the large-sized Daphnia be-
tween the planktivorous fishes since little is known about
the planktivorous fishes in the upper Mekong River. How-
ever, the dominant species of Cladocera is Bosmina core-
goni, which were mainly affected by food availability (Liu
et al., 2009). It was reported that the distribution of Clado-
cera in reservoirs associated to zones near the dam (Henry
and Maricatto, 1996; Nogueira et al., 1999), which could
be related to the higher turbidity in the upper regions of the
reservoirs because excessive turbidity can reduce the stand-
ing stock of some Cladocera (Hart, 1986). In present study,
it is difficult to find a clear spatial distribution pattern
among the five sampling sites. This distribution pattern sug-
gested that the sampling area belongs to the downstream
parts of the reservoir and belonged to lake-type. 

Copepoda communities showed seasonal variation in
the present study. In previous studies, the Calanoida and
Cyclopoida populations were usually analyzed separately
since the Calanoid/Cyclopoida relation could be useful to
indicate the trophic states in the reservoir (Nogueira,
2001; Tundisi et al., 1991). However, the abundance of
Calanoida and Cyclopoida showed no obvious differences
among the different sites (data not shown). The densities
and biomass of Copepoda decreased from January to
April 2012. This period was coincided with an increase
of rotifers. During this period, the Copepoda mainly was
consisted of nauplius, it has been pointed out that the nau-
plius could be found in high abundance throughout the
year (Yi et al., 2010).

CONCLUSIONS

The water began to fill the reservoir on December 16,
2008, and the water level in the reservoir began to rise.
We investigated water quality parameters and metazoo-

Fig. 8. RDA results of zooplankton and environmental factors
for the 5 sites. R, density of rotifers; R-B, wet biomass of ro-
tifers; CL, density of Cladocera; CL-B, wet biomass of Clado-
cera; CO, density of Copepoda; CO-B, wet biomass of
Copepoda.
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plankton communities in the area along the 30 km away
from the Xiaowan dam from September 2011 to Septem-
ber 2012. The TN and TP levels were about 0.9 and 0.04
mg L–1, respectively. The rainfall in the rainy season may
have important effects on the TP contents. The typical sea-
sonal changes of zooplankton communities were mainly
driven by temperature and Chl-a. Our results clearly
showed that this area of the reservoir belonged to lake-
type environment. The considerable fluctuations in the
water quality parameters and zooplankton communities
suggested that the water conditions were not stable. Since
the TN and TP contents were relatively high in the reser-
voir, further studies are needed to clarify the possible
changes of the aquatic ecosystems in this super reservoir
in the upper Mekong River. 
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