
INTRODUCTION

Floodplain lakes are important elements of landscapes
with large rivers. However, improper management of nat-
ural resources leads to degradation and extinction of these
ecosystems, which are known for high biodiversity and
ecological value (Hillbricht-Ilkowska, 1999; Redford and
Richter, 1999; Tockner et al. 2009).

Floodplain lakes play a significant role in a river system: 
– They constitute a geochemical barrier (reducing the in-

flow of nutrients and contaminants to the river) (Lake
and Bond, 2007; Dembowska and Napiórkowski,
2012).

– They provide shelter for animals after river floods
(Meschiatti et al., 2000; Paira and Drago, 2007)

– They constitute a habitat for aquatic animals (Junk et
al., 1989; Shiel et al., 1998).
Oxbow lakes can be seen as places for smooth transi-

tion from flowing to stagnant waters (Baranyi et al., 2002;
Starmach et al., 1976). According to Jezierska-Madziar
(2005), oxbow lakes are formed in two ways: naturally
and artificially (regulation of a riverbed). Natural oxbow
lake are cut off from the main stem of the river. Because
of their small surface and depth they easily undergo suc-
cession. During the process they are overgrown with
water plants, become shallower, and finally disappear. Ar-

tificial oxbow lakes are formed by human hydrological
activity. Lakes of this type are often connected to the river
on one side. With the right level of water in the river, the
connection offers a water exchange.

The significance of plankton in the ecosystems of
floodplain lakes was described by Salbrechter (1998),
Keckeis et al. (2003), Gumiri et al. (2005), Napiórkowski
(2009), Obolewski (2011), and Dembowska et al. (2012).
Anderson and Bonecker (2004) as well as Schöll (2009)
point out that plankton communities in floodplain lakes
are determined primarily by two things: i) whether they
are connected or not to the river; and ii) whether water in-
flow causes any disturbances.

We assume that irregular inflows of water from the
river destabilise conditions in oxbow lakes including
water transparency and temperature and inhibit macro-
phyte growth. All these changes affect plankton commu-
nity. We put forward a hypothesis that phytoplankton
should be more abundant and diverse in the oxbow lake
connected as compared to one isolated from a river. The
inflow of the river’s water into this lake inhibits the de-
velopment of submerged vegetation and increases phyto-
plankton biomass. It also provides nutrients and
intensifies nutrients’ release from the bottom sediments
of the lake (Hein et al., 2004; Kasten, 2003; Grabowska
et al., 2014).
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Macrophytes in the lake isolated from the river can
suppress phytoplankton development through allelopathic
influence, shading water and the bottom, and competing
for food (Scheffer, 1998). Numerous studies confirm a re-
lationship between vascular vegetation and planktonic
algae (Gross, 2003; Gross et al., 2007; Lau and Lane,
2002; Mulderij et al., 2007).

On the other hand, we expected that zooplanktonic
community in the lake connected with the river should be
less abundant and less diverse than in the isolated lake.
Thomaz et al. (2007) noted that zooplankton diversity de-
creases due to the homogenizing effect in floodplain lakes,
flooded by water from rivers. When the water is stagnant
macrophyte biomass in the lake increases. Macrophytes
offer perfect conditions for zooplankton. They provide
shelter for zooplankton against planktivorous fish and in-
vertebrate predators (Lauridsen et al., 1996). Moreover,
zooplankton inhabiting macrophyte stands can feed on
algae found between plant stems, periphyton, protozoans,
bacteria and detritus (Kuczyńska-Kippen and Nagengast,
2006). Basu et al. (2000) examining the fluvial lakes of
St Lawrence River, observed a 9-fold higher zooplankton
biomass within dense macrophyte stands than in open
water or sparsely vegetated areas.

In view of the absence of information on plankton in
floodplain lakes, we evaluated the taxonomic composi-
tion and abundance of planktonic communities (phyto-
plankton and zooplankton) in two oxbow lakes
associated with the Vistula River. One of the lakes is pe-
riodically connected with the river, and the second is to-
tally isolated from the riverbed. Our specific objective
was to determine the influence of the water from the Vis-
tula River on these two habitats.

METHODS

Study area

With the length of 1068 km The Vistula River is the
longest river in Poland and has the second largest (after
Neva) catchment area of the Baltic Sea (194,000 km2).
The Vistula has all the characteristics of a lowland river
over most of its course. In the 19th century, the river was
regulated between 718 km and the mouth (1068 km). De-
spite human interference (changing the river’s flow) and
advancing degradation, the river and the valley represent
an extremely valuable natural environment (Kentzer et
al., 2010).

The first floodplain terrace has a number of oxbow
lakes which are the remains of the backwaters of the
river and are periodically flooded (during major floods
only). There are also artificial oxbow lakes in the river
valley. The study was conducted on two different flood-
plain lakes, natural and artificial, the latter created after
the flood embankments had been constructed during

river regulation at the beginning of the 19th century
(Makowski, 1998).

The studied lakes (Fig. 1) are situated in the valley of
the Lower Vistula, within the city of Toruń, between 734
and 738 km of the river’s course. Site 1 (53°01’N; 18°39’E)
includes the floodplain lake of the Vistula River located on
the 734th km of the river’s course. It is a meandering part
of the river, which is being overgrown by vegetation and
which developed, as many others, due to the Vistula River
regulation. It is a small water body without direct surface
contact with the water of the Vistula River. In the floodplain
lake, the following species of macrophytes occur: yellow
pond-lily (Nuphar lutea (L.) Sm.), rigid hornwort (Cerato-
phyllum demersum L.), and star duckweed (Lemna trisulca
L.). The morphometric characteristics of the oxbow lake
are: a surface area of 2.5 ha maximum length of 220 m,
maximum width of 40 m, and a maximum depth of 2.0 m.
Site 2 (53°00’N; 18°33’E) includes the floodplain lake of
the Vistula River, situated at the 738th km of the river’s
course. This oxbow lake developed as a result of the Vistula
River regulation. It is relatively shallow, young, and usually
connected to the Vistula River (with the average water level
in the river). In the oxbow lake, the following species of

Fig. 1. Location of the sampling sites in floodplain lakes
(Poland).
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macrophytes occur: common hornwort (Ceratophyllum de-
mersum), arrowhead (Sagittaria sagittifolia L.) which
grows on the shores of the oxbow lake, but when the water
level is very low it forms peculiar islands in the middle of
the oxbow lake, Canadian waterweed (Elodea canadiensis
Michx.), pondweed species (Potamogeton sp.), and water
milfoil sp. (Myriophyllum sp.). The morphometric charac-
teristics of the floodplain lake are: surface area 1.0 ha, max-
imum length 160 m, maximum width 100 m, degree of
connection with the Vistula River from 0 to 30 m. The max-
imum depth depends on the water level in the river (from
60 to 160 cm).

The value of TP at summer in 2008 at the site 1
amounted 0.16 mg L−1 and 0.36 mg L−1 at site 2. The con-
centration of mineral forms of nitrogen and phosphorus
amounted 0.134 mg L−1 (N-NO3), 0.068 mg L–1 (P-PO4)
for site 1; and 0.208 mg L−1 (N-NO3), 0.067 mg L−1 (P-
PO4) for site 2.

Sampling methodology 

Water samples were collected twice a month between
April and September, 2008. All phytoplankton and zoo-
plankton samples were collected at a depth of ca. 0.5 m
in the central part of every lake. Phytoplankton samples
for species composition analyses were collected with a
plankton net; 25 μm mesh size. Vertical and horizontal
hauls were made. The samples were then preserved in 4%
formaldehyde. For quantitative analyses, no concentrated
water samples were collected and immediately fixed with
1% acidified Lugol’s iodine (J in KJ). The abundance of
algae was determined with the method of Utermöhl
(1958) using an inverted microscope (MOD-2 PZO). The
counting unit was the individual cell, filament or colony.
The abundance is presented as the number of individuals
per mililiter (N, ind. mL−1). Zooplankton samples were
collected with a 1 litre Patalas bucket. Water was filtered
through a plankton net; mesh size 25 μm. In order to ob-
tain one sample of zooplankton, 10 litres of water were
filtered. All zooplankton samples were preserved in
Lugol’s solution (Nogrady et al., 1993; Harris et al.,
2000). The identification of phyto- and zooplankton was
performed with the use of a light microscope Nikon Al-
phaphot-2 as well as a Panasonic camera and MultiScan
computer software for image analysis.

The taxonomical identification of algae was made ac-
cording to Ettl, 1978, 1983; Hindák, 2008; Javornickỳ,
2003; Komárek and Anagnostidis, 2007, 2008; Komárek
and Fott, 1983; Komárek and Komárkowa, 2006;
Komárek and Zapomèlova, 2007, 2008; Krammer and
Lange-Bertalot, 1986, 1988, 1991a, 1991b; Popovskỳ and
Pfiester, 1990; Růžička, 1977; Starmach, 1968, 1974,
1983; Wołowski, 1998; and Wołowski and Hindák, 2005.
For the identification of zooplankton the commonly avail-
able studies and keys were used (Einsle, 1996; Flössner,

1972; Kiefer, 1978; Nogrady et al., 1993; Radwan, 2004;
Rybak and Błędzki, 2010; Smirnov, 1996).

The collection of samples was measured along with
the physical and chemical parameters of water, such as:
Secchi disk visibility (SD, m), temperature (WT, °C), oxy-
gen concentration (DO, mg L−1), saturation (DO sat., %),
conductivity (EC, μS cm−1), and pH. Measurements of
physico-chemical parameters were performer by Multi
3430SET F WTW field probes. Every two weeks, the con-
tent of chlorophyll a (Chl-a, μg L−1) was determined with
the method of Nusch (1980). Data on the water level (WL,
cm) and flow rate (Q, m3 s−1) of the Vistula River in Toruń
were obtained from the Meteorological and Hydrological
Institute – the Regional Hydrological and Meteorological
Station in Toruń, Poland.

Pearson’s simple correlation (IBM, 2012) was applied
to analyse the relationships between the total number of
plankton and the environmental factors. A canonical cor-
respondence analysis (CCA) was performed using MVSP
3.22 software to show the relations between plankton and
physico-chemical parameters at investigated sites (Ko-
vach, 2010).

RESULTS

Physical and chemical parameters

The average water level in the Vistula River at the time
the samples were collected was 252 cm. The water level
in the Vistula River remained at a rather average and low
level (Fig. 2a). The highest WL in the Vistula River oc-
curred in April (353 cm) and was almost 300 cm lower
than the alarm status for Toruń (650 cm). When the Vis-
tula WL dropped below 230 cm both stations were iso-
lated. This was the situation from late June to late July
and in late summer during the whole month of August. In
the remaining period, Site 1 was isolated but Site 2 was
connected to the main channel of the Vistula. The flow
rate (Fig. 2a) of water in the Vistula River in Toruń during
the study period, was lower than average and amounted
to 750 m3 s–1. The maximum Q (1208 m3 s−1) was recorded
in late April. The water level was strongly correlated with
the flow rate in the Vistula River (r=0.92, P<0.05).

The average water temperature (Fig. 2b) during the six
months, at Site 1, was 17.3°C and was lower by half a Cel-
sius degree compared to the average temperature recorded
at Site 2 (17.8°C). The highest temperature (22.9°C on June
10, 2008) and the lowest temperature (9.0°C on Apr 12,
2008) were recorded at Site 2. The average oxygen con-
centration in the waters of the Vistula oxbow lakes at Site
1 was 6.2 mg L−1, (saturation, 62%), at Site 2 was 8.6 mg
L−1 (saturation, 93%). The maximum value of this param-
eter, i.e. 14.6 mg L−1 (166% water saturation)was recorded
at Site 2 (July 22). The minimum value, i.e. 1.6 mg L−1
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Fig. 2. Seasonal variation of the physic-chemical parameters: a) water level (WL, m) and flow rate (Q, m3 s−1), the shadowed background
indicates the period of disconnection between st.2 and river; b) water temperature (WT, °C); c) oxygen concentration (DO, mg L−1); d)
pH; e) electrolytic conductivity (EC, μS cm−1); f) Secchi disk visibility (SD, m); g) content of chlorophyll a (Chl-a, μg L−1).
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(Fig. 2c). Water reaction (Fig. 2d) in the oxbow lakes was
alkaline (basic). The average pH value at Site 1 amounted
to 8.0, whereas at Site 2 to 8.9. The highest value of this
parameter, i.e. 10.53, was recorded at Site 2, whereas the
lowest value of 7.65 was recorded at Site 1. The average
value of EC (Fig. 2e) for Site 1 was 669 μS cm−1, for Site
2 was 546 μS cm−1. The maximum value of conductivity,
i.e. 754 μS cm−1 was recorded at Site 1 (Sept 19), and the
lowest value of 413 μS cm−1 was recorded at Site 2 (June
10). The mean Secchi depth (Fig. 2f) at Site 1 amounted to
1.4 m and ranged from 0.9 (May 11) to 1.7 (Apr 12).
Whereas the average SD value at Site 2 came to 0.9 m and
ranged from 0.7 m (June 24, July 22, Sept 05) to 1.2 m (Apr
24). The water transparency was significantly negatively
correlated to the temperature at both sites (r=−0.61;
r=−0.62). The average value of chlorophyll a (Fig. 2g) for
Site 1 was 12.14 μg L−1, for Site 2 – 15,42 μg L−1. The max-
imum value of chlorophyll a 43.8 μg L−1 was recorded at
Site 2 (Aug 5), and the lowest value of 3.1 μg L−1 was
recorded at Site 1 (June 24). Tab. 1 summarizes the mean
values and ranges of physico-chemical parameters in the
two investigated sites.

Plankton

At Site 1, there were 109 taxa of phytoplankton
recorded (Supplementary Tab. 1). The richest species
groups were: diatoms, 39 taxa (36% of species composi-
tion); green algae 30 taxa (28%), Euglenophyta 12 taxa
(11%), and Chrysophyceae 10 taxa (9%). Other algae
phyla were represented by only a few species. At Site 1,
sixty-nine forms and species of zooplankton were
recorded: 54 taxa (78% of species composition) of Ro-
tifera, 11 species (16%) of Cladocera, and 4 species (6%)
of Copepoda.

At Site 2, 188 taxa of phytoplankton were recorded
(Supplementary Tab. 1). The richest species groups were:
diatoms, 100 (53% of species composition); green algae 59

taxa (31%), Euglenophyta 12 taxa (6%), and Cyanoprokary-
ota 10 taxa (5%). Other algae phyla were represented by
only a few species. There were 58 forms and species of zoo-
plankton: 49 taxa (85% of the species composition) of Ro-
tifera, 7 species (12%) of Cladocera, and 2 species (3%) of
Copepoda. At the studied sites, larval forms of copepodites
and nauplii were recorded. All together, 41 species of zoo-
plankton were recorded at both sites, 25 species were
recorded only at Site 1, and 17 species were recorded only
at Site 2 (Supplementary Tab. 2).

The average count of total phytoplankton (Fig. 3a)
was over two times lower at Site 1 (1653 ind. mL–1) com-
pared to Site 2 (4168 ind. mL–1). The mean abundance of
total zooplankton (Fig. 3b) was nearly two times higher
at Site 1 (3934 ind. L−1) compared to Site 2 (1657 ind.
L−1). Cryptophyta dominated in phytoplankton at Site 1,
constituting 60% of the total count (1081 ind. mL–1),
Chlorophyta made up 16% (292 ind. mL–1), and Chryso-
phyceae 13% (240 ind. mL–1). Rotifera dominated among
zooplankton at Site 1 (Supplementary Tab. 2), constituting
81% of the total count (3178 ind. L−1). Cladocera made
up 3% (117 ind. L−1), and Copepoda 16% (639 ind. L−1).

Bacillariophyceae dominated in phytoplankton at Site
2, constituting 43% of the total count (1813 ind. mL–1).
Cryptophyta made up 27% (1132 ind. mL–1), and Chloro-
phyta 24% (1014 ind. mL–1). Rotifers also predominated at
Site 2, constituting 78% of the total number (1294 ind. L−1).
Copepoda were dominant among crustaceans. The average
count of copepods was 248 ind. L−1, which made up 15%
of the zooplankton abundance. Cladocera accounted for
7%, with the average count of 115 ind. L−1. The dominant
species among Rotifera were: Keratella cochlearis (Gosse,
1851), Keratella quadrata (Müller, 1786), and Asplanchna
priodonta (Gosse, 1850), among Cladocera: Bosmina lon-
girostris (Müller, 1785), while among Copepoda, larval
forms of copepods: nauplii and copepodites dominated.

In the floodplain lake isolated from the Vistula River,

Tab. 1. Range and mean values of physicochemical parameters over the growing season (from April to September 2008) in two flood-
plain lakes.

Parameters Site 1 Site 2
Mean Range Standard deviation Mean Range Standard deviation

SD (m) 1.4 0.9-2.0 0.29 0.9 0.7-1.2 0.18

DO (mg L−1) 6.2 1.6-12.6 3.23 8.6 3.7-14.6 3.72
DO sat. (%) 62 18-113 28.81 93 1.3-166 41.06

WT (°C) 17.3 9.6-21.7 3.99 17.8 9.0-22.9 4.69
pH 8.0 7.7-8.5 0.31 8.9 8.1-10.5 0.7

EC (μS cm−1) 669 586-754 66.11 546 413-635 67.41
Chl-a (μg L−1) 12.14 3.12-30.18 7.87 15.42 4.48-43.78 11.0

TSI (SD, Chl-a) 54.3 48.0-60.2 4.23 58.4 53.1-66.4 3.69
SD, Secchi disk visibility; DO, dissolved oxygen; WT, water temperature; EC, electrolytic conductivity; TSI, trophic state indices.
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temperature changes adversely affected the abundance of
diatoms and chrysophyceae (r=−0.50, r=−0.52, P<0.05),
but changes positively correlated (Tab. 2) with the abun-
dance of crustacean zooplankton (r=0.72, P<0.05). The
inverse correlation between the abundance of green algae
(r=−0.63, P<0.05), and water transparency (SD) was also
observed at Site 1. Water level (WL) and flow rate (Q)
were positively correlated with the number of diatoms,
Chrysphyceae, and green algae (Tab. 2) at isolated site.

The temperature was negatively correlated with the
abundance of total phytoplankton (especially Crypto-
phyta, r=–0.60 and diatoms r=–0.63, P<0.05) and zoo-
plankton at that floodplain lake which was periodically
connected with the Vistula River (Tab. 2). The rotifer
abundance was positively correlated with the level of
water in the river and water oxygen saturation at Site 2.
The water level was closely and positively associated with
the total abundance of zooplankton (r=0.76, P<0.05) and
phytoplankton (r=0.76, P<0.05); Cryptophyta, Bacillario-
phyceae, and Chlorophyta. The crustacean zooplankton
(abundance) development was positively correlated with
temperature (T) and negatively with transparency
(r=–0.52, P<0.05). High water temperatures were associ-
ated with high abundance of dinoflagellates (r=0.58,

P<0.05) and copepods (r=0.55, P<0.05). Copepods also
negatively responded to an increase in the water level of
the river and connected floodplain lake (Tab. 2).

The results of the CCA analysis, at Site 1 (Fig.4a),
completely reflected the simple Pearson correlation be-
tween plankton and physico-chemical factors. The devel-
opment of crustacean zooplankton had a strong positive
correlation with the temperature and inversely with the
water level and flow rate in the Vistula River. Phytoplank-
ton growth reduced water transparency. The concentration
of chlorophyll a was dependent on the abundance of large
algae i.e. Dinophyta, Chlorophyta, Cyanoprokaryota and
Euglenophyta. While at Site 2 (Fig.4b), environmental
factors were very disturbed by irregular infusions of river
water into the oxbow lake. The changes were so dynamic
that it was difficult to find a clear relationship between
the plankton and physico-chemical factors. The results of
the CCA analysis confirmed only simple correlations be-
tween crustacean plankton, Dinophyta, and the water level
and temperature.

DISCUSSION

After the regulation of the lower Vistula, the exchange
of water between the river and many lakes is limited and
is observed only during floods when water level in the
Vistula is extremely high (Napiórkowski and
Napiórkowska, 2014).

Our research indicates that the irregular inflows of
water from the river destabilize environmental conditions
in the investigated oxbow lakes. Water from the river re-
duced transparency, decreased the temperature, and inhib-
ited macrophyte growth in the lakes. Replenished
macrophytes were not able to provide refuge for zoo-
plankton (i.e. did not offer protection against predators).
Following the destruction of macrophyte community,
planktonic algae became the main primary producers.

The investigated oxbow lakes had slightly different
trophic state indices (TSI). With TSI=54, Site 1 (Carlson,
1977) can be classified as eutrophic. This lake is shallow,
with clear, highly transparent water (the bottom can be
seen) and has abundant submerged vegetation (Scheffer,
1998). The lake’s stable conditions resulted from the fact
that for several years the lake’s water has not mixed with
the river’s water (limnophase). The second oxbow lake
(Site 2), located just behind the flood embankments is
connected with the river through a channel, and thus has
continuous exchange of water with the river. The lake is
regularly flooded (potamophase). Only extremely low
level of water in the Vistula (below 230 cm) limit the
water exchange. The lake has a slightly higher trophic
level with an average TSI of 58.

Frequent water exchange caused resuspension of bot-
tom sediment and reduced water transparency in the lake.
This water body resembles a shallow lake in a turbid state.

Fig. 3. Temporal variation on the total abundance of phyto- (a)
and zooplankton (b).
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Despite many negative consequences of the inflow of
river’s water, it also leads to the refreshing of water in the
lake. The Vistula is characterized by a stable oxygen
regime (Glińska-Lewczuk and Burandt, 2011). When its
lakes suffer from oxygen depletion, the river’s water im-
proves their saturation. This could be observed in the stud-
ied oxbow lakes in August and September, 2008. During
these months, at Site 1 (the lake isolated from the Vistula
River), significant oxygen deficit was observed. At Site 2
(the lake connected to the river), though, oxygen depletion
was not noted. Good oxygen conditions at Site 2 could,
among other factors, could have promoted the develop-
ment of zooplankton, the fact seems to be confirmed by
the correlation between the oxygen content and the aver-
age zooplankton abundance. At Site 1 a relationship of
this kind was not observed.

Temperature is one of the most important physical fac-
tors determining biological processes in aquatic environ-
ments (de Azevedo and Bonecker, 2003; Gyllström et al.,
2008; Starmach et al., 1976; Vadadi-Fülöp et.al., 2009).
The average water temperature in the oxbow lake isolated
from the Vistula River was lower than in the lake con-
nected with the river. During the summer the temperature

at Site 2 was higher. When connection was observed, tem-
perature was lower because a cooling effect of the river.
Increased temperature had an ambiguous effect on phy-
toplankton growth: it could have inhibited the growth of
diatoms and Chrysophyceae at Site 1, and diatoms and
Cryptophyta at Site 2. A positive effect of the temperature
on the development of dinoflagellates was quite remark-
able, though only at Site 2. Raised temperature also in-
creased the abundance of crustaceans at both stations
(Tab. 2). Site 1 was a shallow landlocked oxbow lake,
which heats up easily. As high temperature is favourable
for the development of Cladocera (Forro et al., 2008),
more Cladocera species were recorded at this site.

The phytoplankton species composition in oxbow
lakes is usually similar to the one typical of eutrophic
lakes, with several extra species found only in these spe-
cific ecosystems (Krasznai et al., 2010). Wojciechowska
et al. (2007) reported that the number of species of plank-
tonic algae in oxbow lakes ranges from 250 to 300. The
number of species found in an ecosystem is often related
to the number of analysed samples; in the oxbow lakes of
the Tisza River (Krasznai et al., 2010), 50 taxa of phyto-
plankton were recorded in 4 samples and 308 taxa in 19

Tab. 2. The relationship between planktonic organisms abundance and environmental variables.

N phyto CYAN CRYPT DINO Chryso Bacill EUGL CHLO N zoo Rot Clad Cop

Site 1
N zoo 0.81 0.14 0.84 0.15 0.36 0.12 0.25 0.16
Rot 0.82 0.18 0.79 0.19 0.42 0.20 0.28 0.21
Clad 0.12 -0.21 0.41 -0.23 -0.21 -0.35 -0.10 -0.24
Cop 0.24 -0.20 0.59 -0.21 -0.25 -0.41 -0.11 -0.26

SD -0.39 -0.44 -0.19 -0.32 -0.07 -0.18 -0.36 -0.63 -0.41 -0.41 -0.07 -0.14
DO 0.46 -0.10 0.15 0.06 0.59 0.51 0.16 0.37 0.20 0.25 -0.13 -0.22
DO sat. 0.51 -0.08 0.27 0.07 0.46 0.39 0.19 0.42 0.30 0.32 0.03 -0.07
T 0.09 0.03 0.40 -0.09 -0.52 -0.50 -0.07 0.03 0.32 0.20 0.62 0.72
pH 0.31 0.13 0.14 0.05 0.27 0.29 0.26 0.28 0.07 0.00 0.31 0.36
EC 0.03 0.28 -0.43 0.22 0.40 0.64 0.30 0.44 -0.20 -0.18 -0.09 -0.24
Chl-a -0.02 0.26 -0.05 0.01 -0.21 -0.03 -0.01 0.25 0.08 0.16 -0.43 -0.42
WL 0.30 0.29 -0.10 0.14 0.62 0.60 0.23 0.34 0.30 0.39 -0.29 0.25
Q 0.27 0.49 -0.06 0.25 0.44 0.44 0.32 0.53 0.33 0.41 -0.24 -0.15
Site 2
N zoo 0.53 -0.13 0.35 0.00 0.81 0.52 0.06 0.50
Rot 0.63 -0.08 0.47 -0.15 0.86 0.60 -0.09 0.54
Clad -0.13 -0.21 -0.23 0.64 0.08 -0.16 0.28 0.21
Cop -0.37 -0.17 -0.51 0.37 -0.22 -0.28 0.74 -0.33

SD 0.25 -0.12 0.48 -0.48 0.10 0.23 -0.29 -0.18 0.25 0.11 -0.44 -0.52
DO 0.48 0.49 0.38 -0.38 0.40 0.50 -0.33 0.20 0.48 0.61 0.13 -0.20
DO sat. 0.29 0.54 0.18 -0.24 0.38 0.32 -0.43 0.11 0.29 0.52 0.26 0.09
T -0.57 0.17 -0.60 0.58 0.00 -0.63 0.31 0.05 -0.57 -0.22 0.42 0.55
pH -0.24 0.57 -0.38 -0.54 -0.14 -0.06 0.16 -0.64 -0.24 -0.13 -0.14 0.41
EC 0.07 -0.18 -0.03 0.48 -0.31 0.05 0.59 0.33 0.07 -0.13 0.33 0.22
Chl-a 0.14 0.24 0.10 0.22 0.25 0.03 0.02 0.53 0.14 0.08 -0.30 -0.20
WL 0.76 -0.22 0.77 0.00 0.45 0.63 -0.37 0.77 0.76 0.56 -0.18 -0.53
Q 0.85 -0.16 0.78 0.14 0.62 0.58 -0.38 0.75 0.85 0.51 -0.14 -0.51
CYAN, Canoprokaryota; CRYPT, Cryptophyta; DINO, Dinophyta; Chryso, Chrysophyceae; Bacill, Bacillariophyceae; EUGL, Euglenophyta; CHLO,
Chlorophyta; Rot, Rotifera; Clad, Cladocera; Cop,Copepoda; Pearson correlation coefficient P<0.05; statistical significances are underlined.
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samples. The number of phytoplankton species identified
in the Vistula River’s oxbow lakes seems low but is in fact
similar to the number of taxa identified in the Amazon
floodplain lakes (Melo and Huszar, 2000).

Kuczyńska-Kippen and Nagengast (2006), who stud-
ied shallow lakes dominated by macrophytes, proved that

these water bodies constitute a better habitat for zooplank-
ton than oxbow lakes with sparse macrophytes. A well-
developed macrophyte community in oxbow lakes
ensures the diversity of zooplankton. The lake which was
cut off from the Vistula River (Site 1) had a more abun-
dant zooplankton community. The bottom of this lake was

Fig. 4. Canonical correspondence analysis (CCA) biplot of plankton and physico-chemical parameters: a) at Site 1 (Axis 1, 48.2% of
explanation; Axis 2, 22.3% of explanation); b) at Site 2 (Axis 1, 41.3% of explanation; Axis 2, 21.3% of explanation).
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thickly covered with elodeids (Ceratophyllum, Myrio-
phyllum). Sixty-six species of zooplankton were identi-
fied, 25 of which were only found only at this site. Rotifer
species were predominant at both sites (79% at Site 1 and
85% at Site 2). According to many authors (Keckeis et al.,
2003; Pithart et al., 2007; Schöll, 2009), rotifers are the
dominant group in heleoplankton. Because of their high
tolerance to adverse conditions (Radwan, 2004), they are
commonly found in both stagnant and flowing waters.

Phytoplankton abundance at the two sites was different.
In the lake isolated from the river it was two and a half
times lower than in the lake connected with the river. Small
nanoplankton forms, typical of unstable, mixed ecosystems
(Wojciechowska et al., 2007), dominated in both lakes.
Common in oxbow lakes, Cryptophyta were also predom-
inant in the investigated isolated lake. According to the
classification by Reynolds et al. (2002) updated by Padisák
et al. (2009), Cryptophyta represent the Y functional group
adapted to poor light conditions. As mixotrophs, they are
present in oxbow lakes with abundant organic matter,
which comes mainly from macrophyte decomposition
(Jones, 2000). These forms are active, and can migrate into
the depths of lakes under sufficiently stable conditions. This
ability allows them to compete with other algae, e.g.
cyanobacteria. Moreover, Cryptophyta serve as food for
zooplankton (Reynolds et al., 2002). It seems that the rel-
atively low abundance of these algae at Site 1 and the high
correlation between the Cryptophyta abundance and the
total zooplankton abundance and between the Cryptophyta
abundance and the rotifer abundance resulted from zoo-
plankton pressure (Tab.2).

Site 2 was under the substantial influence of the Vis-
tula River. The water inflow was responsible for a greater
total abundance of phytoplankton (Tab. 2). Small-sized
diatoms, dominant in phytoplankton, were supplied with
the river’s water and belonged to the C, D, and P associ-
ations (Reynolds et al., 2002; Padisák et al., 2003). Mi-
haljević et al. (2009) recorded a significant contribution
of diatoms to phytoplankton abundance in oxbow lakes
during potamophase, as was the case in the studied oxbow
lake (Site 2). Diatoms abundance was correlated with
water level and flow rate in the Vistula (Tab. 2). Small or-
ganisms were also dominant in the zooplankton commu-
nity. The most abundant rotifers constituted from 78% to
81% of the total zooplankton.

Demetraki-Palaeolog (2007) maintains that rotifers
generally represent about 90% of total zooplankton abun-
dance in rivers, Baranyi et al. (2002) reported that rotifers
accounted for almost 85%, and Illyová et al. (2008) re-
ported 67 to 78% zooplankton abundance in the backwa-
ter of the Danube River. It has been suggested that the
apparent predominance of rotifers in rivers and floodplain
lakes may be connected with their small size and rela-
tively short generation time compared to the larger crus-

taceans (van Dijk and van Zanten, 1995; Lair, 2006; Rad-
wan, 2004). In addition, rotifers appear to be better
adapted to adverse conditions of lotic and semi-lotic habi-
tats (Marneffe et al., 1996).

The following species prevailed in the rotifers’ commu-
nity in the investigated oxbow lakes: Keratella cochlearis,
Keratella quadrata, and Asplanchna priodonta. Among the
Cladocera, the most frequently found was Bosmina lon-
girostris. Baranyi et al. (2002) studying the oxbow lakes of
the Danube River, also noted that Bosmina longirostris
dominated among cladocerans. Similar results were also
obtained by Vadadi-Fülöp et al. (2009). No dominant
species among copepods were identified due to the small
number of mature individuals. Copepod larval forms (nau-
plii and copepodites) were the most frequent, similarly to
other oxbow lakes (Spaink et al., 1998; Hein et al., 1999;
Keckeis et al., 2003; Schöll, 2009). Copepods dominated
over cladocerans among the crustaceans in the oxbow lakes
of the lower Vistula. Cladocerans prefer stable conditions
because they are more sensitive to periodic inflows of
river’s water (Vadadi-Fülöp, 2009). For this reason, the
number of cladoceran species was greater at Site 1 (12
species) than at Site 2 (7 species) since Site 2 is periodically
connected with the river.

The average zooplankton abundance at Site 1 was
more than twice as high as that at Site 2. This indicates that
this lake constitutes a better habitat for zooplankton due
to its ecological stability (conditions similar to those found
in ponds), higher temperature in summer (de Azevedo and
Bonecker, 2003), and nutrient availability (high abundance
of small phytoplankton). The macrophyte abundance in
the studied oxbow lakes was also important. Site 1, with
its stability (no inflow of water from the river), offered bet-
ter conditions for the development of macrophytes than
Site 2 which was periodically flooded by the water from
the Vistula River. It seems obvious that better developed
macrophyte community provides better cover and sub-
strate for zooplankton. In addition, both submerged and
emerged plants improve oxygen saturation (Kuczyńska-
Kippen and Nagengast, 2006).

The phytoplankton abundance at Site 1 was several
times lower than at Site 2. This difference may have been
caused by zooplankton grazing. In oxbow lakes connected
with rivers the impact of zooplankton grazing is less sig-
nificant (Keckeis et al., 2003), which explains why zoo-
plankton pressure of on phytoplankton was much higher
at Site 1.

CONCLUSIONS 
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trophic status, the isolated lake had lower temperature,
pH, chlorophyll a concentration and dissolved oxygen
content. In this water body phytoplankton was less abun-
dant and contained a smaller number of species, but zoo-
plankton was better developed. These conditions ensured
species richness and Cladocera abundance. The contribu-
tion of Cryptophyta and Rotifera was high in both lakes.
Diatoms were more frequent in the lake periodically
flooded by the river. On the other hand, the conditions for
zooplankton development were worse in the absence of
macrophytes and nutrients.

The results of the research indicate that species com-
position, plankton abundance, and Chl-a concentration
depended primarily on whether there was an exchange
of water between the river and the lake. Hydrological
conditions affected the relationships between biota com-
ponents.
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