Microbial plankton assemblages, composition and biomass, during two ice-free periods in a deep high mountain lake (Estany Redó, Pyrenees)

Marisol FELIP*, Frederic BARTUMEUS¹⁾, Silvana HALAC¹⁾ and Jordi CATALAN¹⁾

Institute of Zoology and Limnology, Innsbruck University, Technikerstr. 25, A-6020 Innsbruck, Austria ¹⁾Departament d'Ecologia i Centre de Recerca d'Alta Muntanya, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain *e-mail corresponding author: Marisol.Felip@uibk.ac.at; marisol@porthos.bio.ub.es

ABSTRACT

Microbial plankton composition and biomass were monitored for two ice-free periods in a deep oligotrophic high-mountain lake (Redó, Pyrenees). Phytoplankton dominated microbial biomass, while the relationship between total water-column-integrated autotrophic and heterotrophic biomass ranged from 1.5 to 6.5 (an average of 4.4). Heterotrophic biomass was dominated by bacteria (an average of 47 %), but heterotrophic nanoflagellates and, to a lesser degree, ciliates occasionally constituted a sizeable proportion. In general, the microbial biomass ratios were 10:2:2:1 for PHY:BAC:HNF:CIL. About one hundred eukaryotic species were found, although most of them in low abundance and frequency. Phytoplankton biomass was dominated by flagellated chrysophytes and dinoflagellates (an average of 40 and 32% respectively); occasionally cryptophytes (in deep layers) and chlorococcal chlorophytes (during the autumn mixing period) were also significant. In the two years sampled, the maximum phytoplankton diversity was observed during the autumn mixing period. Heterotrophic flagellate biomass was dominated by chrysophytes (78% on average), but sporadically a non-identified species reached high abundances. Oligotrichs, (an average of 43% of total ciliate biomass) dominated the ciliate community, still other groups (gymnostomatida and prostomatida) were also significant. Bacteria biomass was largely homogeneous throughout the two periods, but size segregation was observed especially when the lake was stratified, with larger bacteria appearing in the upper layers. The highest planktonic microbial biomass occurred during the mixing periods, mainly during spring. But no clear relationships were found between the temporal distribution of bacteria, phytoplankton, heterotrophic flagellate and ciliate biomass.

Key words: phytoplankton, bacteria, heterotrophic flagellate, ciliate, oligotrophic lakes

1. INTRODUCTION

High mountain lakes are particularly suitable systems in which to study a number of plankton processes. Extreme conditions of light, UV radiation, temperature, low nutrients and the presence of an ice cover during several months each year are key factors in understanding their plankton dynamics (Pechlaner 1971). The importance of microbial assemblages in the transfer of energy and matter in pelagic environments has been demonstrated for marine (Azam et al. 1983) and freshwater ecosystems (Stockner & Porter 1988). Furthermore, in oligotrophic systems, where production is mainly based on an internal recycling of nutrients, this importance would appear to be greater than in eutrophic environments (Porter et al. 1988, Weisse 1991). These general findings suggest that the microbial component plays an important role in the food webs of high mountain lakes. The microbial components of plankton consist of autotrophic and heterotrophic, pro- and eukaryotic unicellular organisms: bacteria, phytoplankton, heterotrophic flagellates and ciliates.

Studies of plankton in high mountain lakes were undertaken in the 70s, in the Tyrolian Alps (Pechlaner *et al.* 1970; Tilzer 1973) and in the Pyrenees (Capblanq 1972, Margalef *et al.* 1975). Later, studies carried out in Lake Redó (Central Pyrenees) provided data on the relationships between physical, chemical, and biological features during a whole seasonal period (Catalan 1988, 1992; Felip 1997; Felip & Catalan 1999). Most recent studies focus on more specific questions regarding high mountain lake plankton, such as the UV radiation effect (Halac *et al.* 1997; Sommaruga & Garcia-Pichel 1999; Sommaruga *et al.* 1999) or the microbial community inhabiting the ice and snow cover (Felip *et al.* 1995, 1999). However, studies related to the community structure and composition of all the microbial components, and their seasonal changes, do not, to our knowledge, exist for these systems.

In this paper, we present a study of the composition of microbial assemblages (bacteria, phytoplankton, heterotrophic flagellates and ciliates) during two ice-free periods in a deep high mountain lake (Redó, Pyrenees), and we discuss the relative importance of the different stocks and the relationship between the autotrophic and heterotrophic fractions.

2. METHODS

The study was conducted in Lake Redó ($42^{\circ}3'$ N, $0^{\circ}46'$ E), an oligotrophic high mountain lake in the Central Pyrenees (Spain) at 2240 m a. s. l. It has a surface area of 24 ha, a maximum depth of 73 m and a

mean depth of 32 m. A complete description of its physical and chemical features can be found in Catalan (1988, 1989, 1992). It is a dimictic lake, which is usually covered by ice and snow for 6-7 months a year.

The lake was sampled at the maximum depth point every month during the ice-free period of 1996 (from July to December) and 1997 (from June to December). Water samples were obtained at 9 m depth intervals from 0 to 63 m. Immediately after sampling, subsamples were fixed for the subsequent determination of microbial abundance and composition. Samples for autotrophic picoplankton (PICO) were preserved with formaldehyde and rapidly quantified by epifluorescence microscopy (MacIsaac & Stockner 1993). Samples for bacteria (BAC) and heterotrophic nanoflagellate (HNF) enumeration were also preserved with formaldehyde and processed by epifluorescence microscopy, using DAPI staining on black Nucleopore filters (pore size 0.2 µm and 0.8 µm) following the techniques described in Porter & Feig (1980) and Sherr & Sherr (1993). Abundances of phytoplankton (PHY) and ciliates (CIL) were estimated using the Utermöhl method after fixation with Lugol's solution (Sournia 1978). Bacterial biomass, size, and shape were determined by automated image analysis as described in Felip et al. (1995). The volume of all other microorganisms was estimated by shape assimilation to known geometric forms and by measuring the main cell dimensions. If size differences were observed within a species of phytoplankton or ciliates, the individuals of that species were divided into several cell size classes in order to evaluate their volume more accurately. Carbon conversion was assessed according to literature factors: 200 fg C µm⁻³ for PICO (Weisse 1993); 220 fg C μ m⁻³ for HNF (Borsheim & Bratbak 1987); 200 fg C µm⁻³ for PHY (Margalef 1983, Mullin et al. 1966); 140 fg C µm⁻³ for CIL following a prior correction of cell volumes by a factor of 1.4 (Putt & Stoecker 1989, Müller & Geller 1993); and for BAC, we used the allometric equation proposed by Norland (1993). A more detailed description of the procedures can be found in Wathne & Hansen (1997) and in Straškrabová et al. (1999, this volume).

3. RESULTS

3.1. Microbial assemblage diversity

During both ice-free periods the bacterial population was dominated by short rods and cocci between 0.4-0.6 μ m long, while cells up to 1.32 μ m were observed (Tab. 1). Although cell size variability was relatively low, it did change with depth so that larger bacteria were found in the upper layers (Fig. 1), especially when the lake water column was stratified (September 96, August and September 97).

Autotrophic picoplankton were almost absent from Lake Redó and usually no cells were observed during the epifluorescence microscopy exploration. During phytoplankton counts, two species of picocyanobacteria were observed sporadically, although they never occurred in high abundances (Tab. 2).

Tab. 1. Average and range of sample bacterial abundance, biovolume and biomass, and average cell measures (length, width, volume and C content) determined by image analysis.

	Average	Maximum	Minimum
Cell length (µm)	0.64	1.32	0.4
Cell width (µm)	0.27	0.32	0.23
Cell volume (µm ³)	0.03	0.06	0.01
Cell C-content (fg)	9.15	13.15	5.54
Abundance (cells ml ⁻¹)	415291	1274937	176661
Biovolume (µm ³ ml ⁻¹)	14264	28639	5831
Biomass (µg C ml ⁻¹)	3.93	9.2	1.83

About one hundred eukaryotic species were counted, although the abundance and frequency of most was low. Table 2 lists the main species, including the heterotrophic flagellates which we were able to determine during phytoplankton counts. Xanthophyceae, bacillariophyceae, prymnesiophyta and desmidiales were poorly represented in Lake Redó's phytoplankton, be it in number of species, abundance or frequency (Tab. 2). All these groups accounted, on average, for less than 0.5% of the total phytoplankton biovolume (Tab. 3). Chlorophyta and chrysophyceae were the main phytoplankton groups in terms of species number and abundance, with Dictyosphaerium cf. subsolitarium, Sphaerocystis schroeteri, Chromulina spp. Ochromonas sp.2, Pseudokephyrion inflatum and Stichogloea doederleinii being the most abundant species. In contrast, in terms of percentage biovolume the main groups were chrysophyceae and dinophyta, whereas chryptophyta and chlorococcales were only occasionally of any significance (Tab. 3). Figure 2 shows the changes in the percentage of phytoplankton biovolume for the main algae groups during 1996 and 1997 samplings. Temporal trends were similar in both years: chrysophyceae and dinophyta dominated during spring (June and July); chlorococcales increased throughout the summer (August and September) and phytoplankton appeared with greater diversity at the end of the autumn mixing (December). In contrast, cryptophyta were mostly associated with deep layers, where they became the dominant group (i.e., October 1996-97).

More than 20 species of heterotrophic flagellates were counted, though the diversity within the group is difficult to evaluate due to the complexities of taxonomic identification. Heterotrophic chrysophytes was the main group, accounting on average for more than 78% of the total heterotrophic flagellate biovolume, but the most abundant species could not be reliably identified (Tabs 2 and 3). Prostomatida were the most diverse ciliate group, and together with Oligotrichs and Gymnostomes they dominated ciliate assemblages in terms of species abundance, sample frequency and percentage

Fig. 1. Sample average of bacterial length determined by image analysis, ice-free periods of 1996 and 1997.

of total ciliate biovolume (Tabs 2 and 3). Some ciliate species (*Askenasia* spp., *Urotricha pelagica*, *Rimo-strombidium* sp. and *Strombidium* sp.) were found in a large number of samples (Tab. 2).

3.2. Changes in microbial biomass

Bacterial abundance and biomass were usually low and did not change significantly throughout the period studied. The highest value of bacterial biomass was recorded in October 1996 at a depth of 36 m, whereas the lowest value was recorded at the bottom of the lake in July 1997 (Tab. 1).

During 1996 and 1997 the distribution of phytoplanton biovolume differed slightly (Fig. 3). In both years, values peaked in spring (June and July) before decreasing throughout the summer. However, the increase observed during the 1996 autumn mixing period (November) was not recorded in 1997. The highest values were always found between depths of 18 and 27 m. The maximum biovolume (1177 mm³ m⁻³) was reached in June 1997, whereas in July 1997 values were similar to those measured in July 1996 (490 mm³ m⁻³).

Heterotrophic flagellate biovolume was greatest at the beginning of the summer stratification, in the upper layers in 1996 (130 mm³ m⁻³) and at a depth of around 36 m in 1997 (76 mm³ m⁻³). Later, the maximum volume shifted to deeper layers and decreased during the rest of the period, especially in 1997 (Fig. 4).

Ciliate biovolume was also greatest during spring, reaching values of 80 mm³ m⁻³ in 1996 and up to 104 mm³ m⁻³ in 1997, at a depth of 27 m. During the rest of the period, the biovolume decreased, but showed a slight increase in September 1996 when values close to 76 mm³ m⁻³ were measured at depth of 36 m (Fig. 5).

In order to compare the temporal changes in the microbial plankton biomass, column integrated values were calculated for each group, taking into account lake volume and area. Apart from the initial increase in phytoplankton and ciliate biomass observed in June 1997, all microbial groups showed higher biomass and more marked temporal changes during 1996 (Fig. 6). Indeed, in 1996 phytoplankton reached similar values in July and November. The increase in heterotrophic flagellate biomass in autumn was more apparent than in the vertical distribution (Fig. 4), coinciding with a decrease in bacterial biomass (Fig. 6). On the other hand, opposite trends between heterotrophic flagellate and ciliate biomass changes were observed when both groups reached high values (July-September 1996, June-September 1997).

3.3. Autotrophic versus heterotrophic biomass

The biomass ranges for the microbial components of plankton measured in Lake Redó are summarized in table 4. Proportions and ratios were calculated for samples with data for all the groups available (35 samples). Algae dominated microbial biomass, with maximum and minimum phytoplankton percentages being observed in July 1997 at depths of 0 and 63 m respectively. Considering the values calculated for the whole lake (total water-column-integrated biomasses): phytoplankton ranged between 61-87% (average 80%); and the ratio between autotrophic and heterotrophic biomass ranged between 1.5-6.5 (average 4.4). Heterotrophic biomass was dominated by bacteria, which represented on average almost half of the heterotrophic biomass, but the range of variation was high for the three groups of heterotrophs (Tab. 4).

PHYTOPLANKTON Freq. Max Ab. Freq. Max Ab. CYANDBACTERIA Chroococcus sp.1 21 16 2 2 CHLOROPHYTA Synechocystis sp. 11 9 Volvocales Chlamydomonas sp.2 13 0.6 7 3 Chlamydomonas sp.3 21 3.4 23 2 Chlamydomonas sp.4 21 3.4 23 2 Chlamydomonas sp.4 21 3.4 23 2 Chloromous sproveit 29 4 41 16 Chloromous sproveit 29 4 41 16 Chloromous sproveit 29 4 41 16 Chloronous sproveit 29 4 41 16 Chloronous sproveit 29 4 41 16 Chlorococcales Ankisrodesmus proveit 9 3 5 Chlorococcales Ankisrodesmus fusiformits 9 35 63 19 Bortyrococcus broauti			1996		1997	
CYANOBACTERIA Synechocysits sp. 21 16 2 2 CHLOROPHYTA Volvocales Chlanydomonas sp.1 52 6 36 12 CHLOROPHYTA Volvocales Chlanydomonas sp.2 13 0.6 7 3 Chlanydomonas sp.3 4 0.6 7 3 Chlanydomonas sp.4 21 3.4 2.3 2 Chloromonas groveii 29 4 41 16 Chloromonas groveii 29 4 41 16 Chloromonas groveii 29 4 41 16 Chloromonas groveii 33 5 38 33 Dysmorphococcus variabilis 4 0.5 2 0.6 Prevasoifiella sp. 5 2 1 3 5 3 19 Botryococcus brauni 4 0.14 27 0.66 3 19 Botryococcus brauni 5 0.1 73 100 13 4 8 19	PHYTOPLANKTON		Freq.	Max Ab.	Freq.	Max Ab.
Synechocysiis sp. 11 9 Volvocales Chlamydomonas sp.1 52 6 36 12 Volvocales Chlamydomonas sp.2 13 0.6 7 3 Chlamydomonas sp.3 4 0.6 7 3 Chlamydomonas sp.4 21 3.4 23 2 Chlamydomonas sp.4 21 3.4 23 2 Chlorononas modesta 13 3 -	CYANOBACTERIA	Chroococcus sp.1	21	16	2	2
CHLOROPHYTA Volvocales Chlamydomonas sp.1 52 6 36 12 Volvocales Chlamydomonas sp.2 13 0,6 7 3 Chlamydomonas sp.3		Synechocystis sp.			11	9
Volvocales Chlamydomonas sp.1 52 6 36 12 Chlamydomonas sp.3 13 0.6 7 3 Chlamydomonas sp.4 21 3.4 23 2 Chlamydomonas sivalis 17 0.04 4 2 Chloromons modesta 13 3 - - Chloromonas sp.1 33 5 38 33 Dysmorphococcus variabilis 4 0.5 2 0.6 Provasoliella sp. 5 2 7 6 3 19 Sonycoccus variabilis 4 0.14 27 0.66 0.6 0.66 0.6 0.66	CHLOROPHYTA	, , , , , , , , , , , , , , , , , , ,				
Chlanydomonas sp.2 13 0,6 7 3 Chlanydomonas sp.3 4 0,6 Chlanydomonas sp.4 21 3,4 23 2 Chlanydomonas nivalis 17 0,04 4 2 Chloromonas groveii 29 4 41 16 Chloromonas sp.1 33 5 38 33 Dysmorphococcus variabilis 4 0,5 2 0,6 Prerosoliella sp. 5 2 1 1 36 5 38 33 Dysmorphococcus variabilis 4 0,5 2 0,6 1 <td< td=""><td>Volvocales</td><td>Chlamydomonas sp.1</td><td>52</td><td>6</td><td>36</td><td>12</td></td<>	Volvocales	Chlamydomonas sp.1	52	6	36	12
Chlanydomonas sp.3		Chlamydomonas sp.2	13	0,6	7	3
Chlanydomonas siyalis 17 0,04 4 2 Chloromonas minalis 17 0,04 4 2 Chloromonas modesta 13 3 - - Chloromonas sp.1 33 5 38 - - Chloromonas sp.1 33 5 2 0,66 - </td <td></td> <td>Chlamydomonas sp.3</td> <td></td> <td></td> <td>4</td> <td>0,6</td>		Chlamydomonas sp.3			4	0,6
Chlamydomonas nivalis 17 0.04 4 2 Chloromonas groveii 29 4 41 16 Chloromonas groveii 13 3 - - Chloromonas sp. 1 33 5 38 33 Dysmorphococcus variabilis 4 0.5 2 0.6 Prevasoliella sp. 5 2 1 Chlorococcales Ankistrodesmus fusiformis 90 35 63 19 Borryococcus braunii 4 0.14 27 0.66 Monoraphitum sp. 8 1094 91 862 Monoraphitum sp. 81 0.6 88 4 Occystis borgeii 81 0.6 88 4 Occystis borgeii 81 28 100 26 Pseudoguadrigula sp. 21 3 48 28 Occystis bargeis schroeteri 100 757 100 134 XANTHOPHYCEAE Hsmochloron trispinatum 13 4 <td></td> <td>Chlamydomonas sp.4</td> <td>21</td> <td>3,4</td> <td>23</td> <td>2</td>		Chlamydomonas sp.4	21	3,4	23	2
Chloromonas grovii 29 4 41 16 Chloromonas modesta 13 3 5 38 33 Dysmorphococcus variabilis 4 0,5 2 0,6 Prevasoliella sp. 5 2 7 5 2 Pteromonas sp. 8 0.9 2 1 1 Chlorococcales Ankistrodesmus fusiformis 90 35 63 19 Botryococcus brauniti 4 0,14 27 0,66 Dictyosphaerium Cf. subsolitarium 98 1094 91 862 Monoraphidium sp. 77 35 89 48 Ocystis parva 81 28 100 26 Pseudophaerocystis sp. 9 105 1349 10 XANTHOPHYCEAE Ismochloron trispinatum 13 4 36 16 Monallanus sp. 29 3 32 5 5 27 CHRYSOPHYCEAE Bitrichia sp. 29 3		Chlamydomonas nivalis	17	0,04	4	2
Chloromonas modesta 13 3 Chloromonas sp. 1 33 5 38 33 Dysmorphococcus variabilis 4 0.5 2 0.6 Provasoliella sp. 5 2 Tetrablepharis globulosus 8 0.9 2 1 Ankistrodesmus fusiformis 90 35 63 19 Botryococcus braunii 4 0.14 27 0.66 Dictyosphaerium cf. subsolitarium 98 1094 91 862 Monoraphildims p. 81 0.6 88 4 Occystis borgeti 81 0.6 88 4 Occystis borgeti 100 737 100 1349 Trochiscia sp. 5 0.1 1343 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 11 Chrysococcus sp.1 73 55 27 24		Chloromonas groveii	29	4	41	16
Chloromonas sp. 1 33 5 38 33 Dysmorphoceccus variabilis 4 0,5 2 0,6 Provasoliella sp. 5 2 Preromonas sp. 5 2 Preromonas sp. 5 2 Tetrablepharis globulosus 8 0,9 2 1 Chlorococcales Ankistrodesmus fusiformis 90 35 63 19 Botrycocccus braunii 4 0,14 27 0,66 Dicryosphaerium cf. subsolitarium 98 1094 91 862 Monoraphidium sp. 77 35 89 48 Oocystis borgeii 81 28 100 26 Pseudogudriguds p. 1 3 48 28 Pseudogudriguds p. 5 0.1 3 43 10 XANTHOPHYCEAE Itsmochtoron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 2		Chloromonas modesta	13	3		
Dysmorphococcus variabilis 4 0.5 2 0.6 Provasoliella sp. 5 2 Pteromonas sp. 5 2 Chlorococcales Ankistrodesmus fusiformis 90 35 6.3 19 Botryococcus braunii 4 0.14 27 0.66 Dictyosphaerium cf. subsolitarium 98 1094 91 862 Monoraphidium sp. 77 35 89 48 Oocystis borgeii 81 0.6 88 4 Oocystis barva 81 28 100 26 Pseudoguadrigula sp. 21 3 48 28 Descridiales Cosmarium sp. 5 0.1 1349 Sphaerocystis schroeteri 100 737 100 1349 ANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 33 2 5 100 Chromulina parvula 81 33 96		Chloromonas sp. 1	33	5	38	33
Provasoliella sp. 5 2 Pieromonas sp. 5 2 Tetrabiepharis globulosus 8 0.9 2 1 Chlorococcales Ankistrodesmus fusiformis 90 35 63 19 Botryzocccus brauni 4 0.14 27 0.66 Dictyosphaerium cf. subsolitarium 98 1094 91 862 Monoraphidium sp. 77 35 89 48 Ococystis borgeii 81 0.6 88 4 Ocosystis parva 81 28 100 26 Pseudoquadrigula sp. 21 3 48 28 Pseudoquadrigula sp. 9 105 5 0.1 Desmidiales Cosmarium sp. 8 0.78 43 10 XANTHOPHYCEAE Ismochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 7 24 Chromoulina sp. 9 13		Dysmorphococcus variabilis	4	0,5	2	0,6
Pieromona sp. 5 2 Tetrablepharis globulosus 8 0.9 2 1 Chlorococcales Ankistrodesmus fusiformis 90 35 63 19 Botryococcus braunii 4 0.14 27 0.66 Dictyophaerium C. subsolitarium 98 100 26 Monoraphidium sp. 77 35 89 48 Occystis bargei 81 0.6 88 4 Occystis barya 81 28 100 26 Pseudopudrigula sp. 21 3 48 28 Occystis barya 80 78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chrosococcus sp.1 73 55 27 24 Chrosococcus sp.2 21 28 28 110		Provasoliella sp.			5	2
Tetrablepharis globulosus 8 0.9 2 1 Chlorococcales Ankistrodesmus fusiformis 90 35 63 19 Botrycoccats braunit 4 0.14 27 0.66 Dictycosphaerium Cf. subsolitarium 98 1094 91 862 Monoraphialium sp. 77 35 89 48 Oocystis borgeii 81 0.6 88 4 Oocystis parva 81 28 100 26 Pseudoguadrigula sp. 21 3 48 28 Pseudosphaerocystis schroeteri 100 737 100 1349 Trochiscia sp. 5 0.1 33 96 444 ANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monaliantus sp. 29 3 32 5 7 24 Chrosococcus sp.1 73 55 27 24 24 25 24 25 34 85 3		Pteromonas sp.			5	2
Chlorococcales Ankistrodesmus fixiformis 90 35 63 19 Botryococcus braunii 4 0,14 27 0,66 Dictyosphaerium cl. subsolitarium 98 1094 91 862 Monoraphidium sp. 77 35 89 48 Occystis borgeii 81 0,6 88 4 Occystis parva 81 28 100 26 Pseudophaerocystis sp. 9 105 5 0.1 Desmidiales Consmirum sp. 8 0,78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chroysococcus sci rufescens 81 53 66 25 Chrysococcus sp.2 21 28 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95		Tetrablepharis globulosus	8	0,9	2	1
Botryococcus braunii 4 0,14 27 0,66 Dictyosphaerium cf. subsolitarium 98 1094 91 862 Monoraphidium sp. 77 35 89 48 Oocystis borgeii 81 0.6 88 4 Oocystis parva 81 28 100 26 Pseudoquadrigula sp. 21 3 48 28 Sphaerocystis schroeteri 100 737 100 1349 Trochiscia sp. 5 0.1 XANTHOPHYCEAE Itsmochtoron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chrosocccus sp.1 73 55 27 24 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.1 73 55 28 110 <t< td=""><td>Chlorococcales</td><td>Ankistrodesmus fusiformis</td><td>90</td><td>35</td><td>63</td><td>19</td></t<>	Chlorococcales	Ankistrodesmus fusiformis	90	35	63	19
Dictyosphaerium cf. subsolitarium 98 1094 91 862 Monoraphidium sp. 77 35 89 48 Oocystis bargeii 81 0.6 88 4 Oocystis parva 81 28 100 26 Pseudosphaerocystis sp. 9 105 348 28 Pseudosphaerocystis sp. 9 105 77 100 1349 Trochiscia sp. 5 0.1 100 737 100 1349 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chromococcus sp.1 73 55 27 24 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.1 73 50 84 47 Ochromonas sp.2 <td></td> <td>Botryococcus braunii</td> <td>4</td> <td>0,14</td> <td>27</td> <td>0,66</td>		Botryococcus braunii	4	0,14	27	0,66
Monoraphidium sp. 77 35 89 48 Oocystis borgeii 81 0.6 88 4 Oocystis parva 81 28 100 26 Pseudogphaerocystis sp. 9 105 Sphaerocystis schroeteri 100 737 100 1349 Desmidiales Cosmarium sp. 8 0.78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallentus sp. 29 3 32 5 5 Chrwulina parvula 81 33 96 444 Chrosocccus sp. 79 141 96 2300 Chrysocccus sp. 79 141 96 2300 Chrysoccccus sp. 71 35 5 77 24 Chrysocycoccus sp. 71 34 55 7 5 81 5 5 11 26 2300 27 24 24 24 24		Dictyosphaerium cf. subsolitarium	98	1094	91	862
Oocystis borgeii 81 28 100 26 Pseudognadrigula sp. 21 3 48 28 Pseudosphaerocystis sp. 9 105 Sphaerocystis schroeteri 100 737 100 1349 Trochiscia sp. 5 0.1 Desmidiales Cosmarium sp. 8 0,78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chrosococcus cf. rufescens 81 53 66 25 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.2 21 28 24 48 55 5 66 25 Chrysococcus sp.2 21 28 28 11 26 2300 25 4 444 444 6 13 45 94 95 11 26 14		Monoraphidium sp.	77	35	89	48
Oocystis parva 81 28 100 26 Pseudoquadrigulasp. 21 3 48 28 Pseudosphaerocystis sp. 9 105 Sphaerocystis schroeteri 100 737 100 1349 Trochiscia sp. 5 0.1 Desmidiales Cosmarium sp. 8 0,78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chrosoporccus cf. rufescens 81 33 96 444 Chrosococcus sp.1 73 55 27 24 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Keephyrion planctonicum 73 55 21 28 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47		Oocystis borgeii	81	0,6	88	4
Pseudoguadrigula sp. 21 3 48 28 Pseudosphaerocystis sp. 9 105 Sphaerocystis schroeteri 100 737 100 1349 Trochiscia sp. 5 0.1 Desmidiales Cosmarium sp. 8 0,78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chromulina sp. 79 141 96 2300 Chrysococcus sp. 73 55 21 28 Chrysococcus sp. 73 55 27 24 Chrysococcus sp. 73 55 27 24 Chrysococcus sp. 73 55 27 24 Chrysococcus sp. 73 29 3 66 25 Chrysococcus sp. 7 94 57 95 11 Ochromonas sp. 45 94 95 11 Ochromonas sp.2 98 110 96 154 Ochrom		Oocystis parva	81	28	100	26
Pseudosphaerocystis sp. 9 105 Sphaerocystis schroeteri 100 737 100 1349 Trochiscia sp. 5 0.1 Desmidiales Cosmarium sp. 8 0.78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chromulina spp. 79 141 96 2300 Chrysococcus scl. rufescens 81 53 66 25 Chrysococcus sp.1 73 55 27 24 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Kephyrion planctonicum 5 0,8 44 Ochromonas sp.1 9 3 0 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4<		Pseudoquadrigula sp.	21	3	48	28
Sphaerocysii schroeteri 100 737 100 1349 Trochiscia sp. 5 0.1 Desmidiales Cosmarium sp. 8 0.78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chromulina spp. 79 141 96 2300 Chrysococcus cf. rufescens 81 53 66 25 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.2 21 28 Chrysococcus sp.2 21 28 Chrysococcus sp.2 21 28 Mallomonas sp.2 38 2 34 Ochromonas globosa 5 4 Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 Ochromonas sp.2 98 1110 96 <		Pseudosphaerocystis sp.			9	105
Trochiscia sp. 5 0.1 Desmidiales Cosmarium sp. 8 0,78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 37 29 37 CHRYSOPHYCEAE Bitrichia sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chromulina sp. 79 141 96 2300 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.2 21 28 28 34 85 Dinobryon cylindricum 77 94 57 95 5 43 Mallomonas sp.1 9 3 0 6 154 0 6 154 Ochromonas sp.3 96 65 84 47 0 110 96 154 Ochromonas sp.5 29 1,4 110 96 154 0 1175 3 <td></td> <td>Sphaerocystis schroeteri</td> <td>100</td> <td>737</td> <td>100</td> <td>1349</td>		Sphaerocystis schroeteri	100	737	100	1349
Desmidiales Cosmarium sp. 8 0,78 43 10 XANTHOPHYCEAE Itsmochloron trispinatum 13 4 36 16 Monallantus sp. 29 3 32 5 CHRYSOPHYCEAE Bitrichia sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chromulina spp. 79 141 96 2300 Chrysococcus cf. rufescens 81 53 66 25 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.2 21 28 28 28 28 29 3 29 3 29 3 29 3 29 3 28 21 28 28 28 29 29 3 38 2 34 85 35 39 6 5 4 0chromonas sp.1 9 3 0 3 32 9 3 110 36		Trochiscia sp.			5	0.1
XANTHOPHYCEAE Issochloron trispinatum 13 4 36 16 Monallantus sp. 29 37 32 5 CHRYSOPHYCEAE Bitrichia sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chromulina sp. 79 141 96 2300 Chrysococcus cf. rufescens 81 53 66 25 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.2 21 28 28 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Kephyrion planctonicum 5 0,8 Mallomonas sp.1 9 3 Ochromonas sp.1 9 3 0chromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 175 51 BACILLARIOPHYCEAE Aulacoseira (Desmidiales	Cosmarium sp.	8	0,78	43	10
Monallantus sp. 29 3/ CHRYSOPHYCEAE Bitrichia sp. 29 3 32 5 Chromulina parvula 81 33 96 444 Chromulina spp. 79 141 96 2300 Chrysococcus cf. rufescens 81 53 66 25 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.2 21 28 28 28 28 29 31 85 Dinobryon cylindricum 77 94 57 95 8 95 11 Ochromonas sp. 45 94 95 11 0 6 154 0 154 Ochromonas sp.1 9 3 0 6 54 47 Ochromonas sp.2 98 1110 96 154 0 154 Ochromonas sp.5 29 1,4 7 153 0,2 14 3 0,2 BACILLARIOPHYCEAE	XANTHOPHYCEAE	Itsmochloron trispinatum	13	4	36	16
CHRYSOPHYCEAE Bitrichia sp. 29 3 32 5 Chromulina spp. 79 141 96 2300 Chromulina spp. 79 141 96 2300 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.2 21 28 28 24 85 Dinobryon cylindricum 77 94 57 95 86 29 11 29 3 30 21 28 Chrysolykos skujae 38 2 34 85 29 14 85 29 14 81 30 21 28 21 28 21 28 21 28 21 28 21 28 21 28 21 28 21 28 11 26 26 21 25 11 26 21 25 11 26 26 26		Monallantus sp.	•		29	37
Chromulina parvula 81 33 96 444 Chromulina spp. 79 141 96 2300 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp.2 21 28 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Kephyrion planctonicum 5 0,8 Mallomonas sp. 45 94 95 11 Ochromonas sp.1 9 3 0 3 0 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 7 Pseudokephyrion inflatum 94 180 93 1175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 1 23 0.7 Cyclotella pseudostelligera 12 51 51 Uroglena sp. 13 1 23 0.7 <td>CHRYSOPHYCEAE</td> <td>Bitrichia sp.</td> <td>29</td> <td>3</td> <td>32</td> <td>5</td>	CHRYSOPHYCEAE	Bitrichia sp.	29	3	32	5
Chromutina spp. 79 141 96 2300 Chrysococcus cf. rufscens 81 53 66 25 Chrysococcus sp.1 73 55 27 24 Chrysococcus sp. 2 21 28 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Kephyrion planctonicum 5 0,8 Mallomonas sp. 45 94 95 11 Ochromonas globosa 5 4 Ochromonas sp.1 9 3 0 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.5 29 1,4 75 5 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 1 23 0.7 Exclusterial (lirata + alpigena) 13 1 23 0.7 Cyclotella pseudokephyrion inflatum 94 18 91 110 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1		Chromulina parvula	81	33	96	444
Chrysococcus sp.1 73 53 66 25 Chrysococcus sp.2 21 28 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Kephyrion planctonicum 77 94 57 95 Mallomonas sp. 45 94 95 11 Ochromonas globosa 5 4 9 3 Ochromonas sp.1 9 3 0 0 154 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 1 23 0.7 Cyclotella pseudostelligera 12 51 51		Chromulina spp.	/9	141	96	2300
Chrysococcus sp.1 73 53 27 24 Chrysococcus sp.2 21 28 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Kephyrion planctonicum 5 0,8 Mallomonas sp. 45 94 95 11 Ochromonas globosa 5 4 Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 175 5 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 1 23 0,7 Experimental filtum 94 180 93 1175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 1 23 0,7 Cyclotella sp. 2		Chrysococcus cI. rujescens	81	55	00	25
Chrysococcus sp. 2 21 28 Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Kephyrion planctonicum 5 0,8 Mallomonas sp. 45 94 95 11 Ochromonas globosa 5 4 Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 7 Pseudokephyrion inflatum 94 180 93 1175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 1 23 0.7 Experimental anama 2 0,7 27 10 PRYMNESIOPHYTA Chrysochromulina sp. 14 3 CRYPTOPHYTA Chroomonas acuta 67 27 84 82 Cryptomonas marsonii 94 8 88 13 Cryptomonas marsonii		Chrysococcus sp.1	/3	55	27	24
Chrysolykos skujae 38 2 34 85 Dinobryon cylindricum 77 94 57 95 Kephyrion planctonicum 5 0,8 Mallomonas sp. 45 94 95 11 Ochromonas globosa 5 4 Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 180 93 1175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 0,2 9 13 0,2 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1 23 0.7 Cyclotella pseudostelligera 2 0,7 27 10 Fragilaria nanana 2 0,7 27 10 Fragilaria nanana 2 0,7 27 10 RYMNESIOPHYTA Chrosochromulina sp. 14 3 3 CRYPTOPHYTA		Chrysococcus sp. 2	20	2	21	28
Binobryon cylinaricum 17 94 37 93 Kephyrion planctonicum 5 0,8 Mallomonas sp. 45 94 95 11 Ochromonas globosa 5 4 Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 0,2 98 110 96 154 Ochromonas sp.5 29 1,4 14 3 0,2 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1 23 0,7 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1 23 0,7 Regilaria nanana 2 0,7 27 10 Fragilaria nanana 2 0,7 27 10 PRYMNESIOPHYTA Chrosochromulina sp. 14 3 CRYPTOPH		Chrysolykos skujae	38 77	2	54 57	85 05
Kepnyrion planctonicum 5 0,8 Mallomonas sp. 45 94 95 11 Ochromonas globosa 5 4 Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 7 Pseudokephyrion inflatum 94 180 93 1175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 0,2 0,7 13 0,2 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1 23 0,7 Cyclotella sp. 2 0,7 27 10 Fragilaria nanana 2 0,7 27 10 PRYMNESIOPHYTA Chrosonas acuta 67 27 84 82 CRYPTOPHYTA Chroomonas marsonii 94 8 88 13 Cryptomonas ovata 100 28 93 11 Rhodomonas minuta		Dinobryon cylinaricum	//	94	57	95
Mathomonas sp. 43 94 93 11 Ochromonas globosa 5 4 Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 1 14 Pseudokephyrion inflatum 94 180 93 1175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 0,2 0,2 0,2 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1 23 0,7 Cyclotella pseudostelligera 2 0,7 27 10 Fragilaria nanana 2 0,7 27 10 PRYMNESIOPHYTA Chrosonas acuta 67 27 84 82 Cryptomonas marsonii 94 8 88 13 Cryptomonas ovata 100 28 93 11 Rhodomon		Mallomonas sp	45	04	5	0,8
Ochromonas giobosa 9 3 Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 73 229 93 647 Droglena sp. 73 229 93 647 9 13 0,2 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1 23 0.7 Cyclotella pseudostelligera 12 51 51 51 51 PRYMNESIOPHYTA Chrysochromulina sp. 14 3 3 CRYPTOPHYTA Chroomonas acuta 67 27 84 82 Cryptomonas marsonii 94 8 88 13 Rhodomonas minuta 23 2 13 1		Mattomonas sp.	43	94	95	11
Ochromonas sp.1 9 3 Ochromonas sp.2 98 1110 96 154 Ochromonas sp.3 96 65 84 47 Ochromonas sp.5 29 1,4 73 229 93 647 Droglena sp. 73 229 93 647 96 65 84 47 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1 23 0.7 Cyclotella pseudostelligera 12 51 251 20,1 51 Fragilaria nanana 2 0,7 27 10 14 3 CRYPTOPHYTA Chrosochromulina sp. 14 3 3 1 <td< td=""><td></td><td>Ochromonas globosa</td><td></td><td></td><td>5</td><td>4</td></td<>		Ochromonas globosa			5	4
Ochromonas sp.2 96 65 84 47 Ochromonas sp.5 29 1,4 73 229 1,4 Pseudokephyrion inflatum 94 180 93 1175 Stichogloea doederleinii 73 229 93 647 Uroglena sp. 13 0,2 13 0,2 BACILLARIOPHYCEAE Aulacoseira (lirata + alpigena) 13 1 23 0,7 Cyclotella pseudostelligera 12 51 51 51 51 51 PRYMNESIOPHYTA Chrysochromulina sp. 14 3 3 3 3 3 CRYPTOPHYTA Chroomonas acuta 67 27 84 82 3 11 Rhodomonas marsonii 94 8 88 13 3 1 3 1 3 3 CRYPTOPHYTA Chroomonas acuta 67 27 84 82 3 11 Rhodomonas minuta 23 2 13 1 3 1		Ochromonas sp.1	08	1110	96	154
Ochromonas sp.5291,4Ochromonas sp.5291,4Pseudokephyrion inflatum94180931175Stichogloea doederleinii7322993647Uroglena sp.131230.7BACILLARIOPHYCEAEAulacoseira (lirata + alpigena)131230.7Cyclotella pseudostelligera1251Cyclotella sp.20,72710PRYMNESIOPHYTAChrysochromulina sp.143CRYPTOPHYTAChroomonas acuta67278482Cryptomonas marsonii9488813Cryptomonas marsonii9488813Rhodomonas minuta232131		Ochromonas sp.2	96	65	90 84	134
Pseudokephyrion inflatum94180931175Stichogloea doederleinii7322993647Uroglena sp.130,2BACILLARIOPHYCEAEAulacoseira (lirata + alpigena)131230,7Cyclotella pseudostelligera1251Cyclotella sp.20,72710PRYMNESIOPHYTAChrysochromulina sp.143CRYPTOPHYTAChroomonas acuta67278482Cryptomonas marsonii9488813Cryptomonas minuta232131		Ochromonas sp.5	29	14	04	47
Stichogloea doederleinii7322993647Uroglena sp.130,2BACILLARIOPHYCEAEAulacoseira (lirata + alpigena)131230.7Cyclotella pseudostelligera1251Cyclotella sp.20,1Fragilaria nanana20,72710PRYMNESIOPHYTAChrysochromulina sp.143CRYPTOPHYTAChroomonas acuta67278482Cryptomonas marsonii9488813Cryptomonas minuta232131		Pseudokenhvrion inflatum	94	1,4	93	1175
BACILLARIOPHYCEAEAulacoseira (lirata + alpigena)131230.7Cyclotella pseudostelligera131230.7Cyclotella pseudostelligera1251Cyclotella sp.20.1Fragilaria nanana20.727PRYMNESIOPHYTAChrysochromulina sp.143CRYPTOPHYTAChroomonas acuta67278482Cryptomonas marsonii9488813Cryptomonas ovata100289311Rhodomonas minuta232131		Stichogloga dogderleinii	73	229	93	647
BACILLARIOPHYCEAEAulacoseira (lirata + alpigena)131230.7Cyclotella pseudostelligera1251Cyclotella sp.20.1Fragilaria nanana20,72710PRYMNESIOPHYTAChrysochromulina sp.143CRYPTOPHYTAChroomonas acuta67278482Cryptomonas marsonii9488813Cryptomonas minuta232131		Urogleng sp	15	22)	13	0.2
DifferenceInductor in CurrenceInductor in CurrenceInductor in CurrenceInductor in CurrenceCyclotella pseudostelligera1251Cyclotella sp.20.1Fragilaria nanana20,7PRYMNESIOPHYTAChrysochromulina sp.14CRYPTOPHYTAChroomonas acuta67Cryptomonas marsonii948Cryptomonas ovata100289311Rhodomonas minuta232131	BACILLARIOPHYCEAE	Aulacoseira (lirata + alpigena)	13	1	23	0,2
Cyclotella sp.20.1Cyclotella sp.20.7Fragilaria nanana20,7PRYMNESIOPHYTAChrysochromulina sp.14CRYPTOPHYTAChroomonas acuta67Cryptomonas marsonii948Cryptomonas ovata100Rhodomonas minuta232131	Diverteringeringering	Cyclotella pseudostelligera	15	1	12	51
Fragilaria nanana20,72710PRYMNESIOPHYTAChrysochromulina sp.143CRYPTOPHYTAChroomonas acuta67278482Cryptomonas marsonii9488813Cryptomonas ovata100289311Rhodomonas minuta232131		Cyclotella sp.			2	0.1
PRYMNESIOPHYTAChrysochromulina sp.143CRYPTOPHYTAChroomonas acuta67278482Cryptomonas marsonii9488813Cryptomonas ovata100289311Rhodomonas minuta232131		Fragilaria nanana	2	0.7	27	10
CRYPTOPHYTAChroomonas acuta67278482Cryptomonas marsonii9488813Cryptomonas ovata100289311Rhodomonas minuta232131	PRYMNESIOPHYTA	Chrysochromulina sp.	-	-,,	14	3
Cryptomonas marsonii9488813Cryptomonas ovata100289311Rhodomonas minuta232131	СКУРТОРНУТА	Chroomonas acuta	67	27	84	82
Cryptomonas ovata100289311Rhodomonas minuta232131		Cryptomonas marsonii	94	8	88	13
Rhodomonas minuta 23 2 13 1		Cryptomonas ovata	100	28	93	11
		Rhodomonas minuta	23	2	13	1

Tab. 2. List of the main microbial species identified in Lake Redó plankton. Freq = frequency in samples (%), and Max Ab. = maximum abundance (ind ml^{-1}), measured during 1996 and 1997 ice-free periods.

to be continued

Tab. 2. Continuation.

		1	996	1	997
PHYTOPLANKTON		Freq.	Max Ab.	Freq.	Max Ab.
DINOPHYTA	Amphidinium elenkinii	90	186	87	227
	Gymnodinium uberrimum	79	2	91	6
	Gymnodinium cnecoides	2	0,6	16	10
	<i>Gymnodinium</i> sp. 1	94	105	98	227
	Gymnodinium sp. 2	2	0,6	13	5
	Peridinium inconspicuum	94	6	82	21
HETER. FLAGELLATES	I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
CHRYSOPHYCEAE	Monas coronifera	42	7	48	7
	Oikomonas termo	75	0,3	73	12
	Spumella - Oikomonas spp. 3 µm	58	48	100	42
	Spumella - Oikomonas spp. 5 µm	79	21	100	51
	Spumella - Oikomonas spp. 10 µm	50	3	93	37
CHOANOFLAGELLATES	Monosiga ovata	38	4	73	31
	Proterospongia sp.	21	11		
	Salpingoeca-like			62	21
BODONIDS	Pleuromonas nasuta	40	8	84	62
CRYPTOMONADS	Goniomonas truncata			4	1
OTHERS	Tetramitus sp.			2	5
NON-IDENTIFIED FLAG.	Non-identified species 1	73	39	84	61
	Non-identified species 2			13	6
	Non-identified species 4			4	0.02
	Non-identified species 5	81	88	95	288
	Non-identified species 6	17	2	86	43
	Non-identified species 7	50	5	29	12
	Non-identified species 8	15	2		
	Non-identified species 9	19	0.9		
	Non-identified species 11		- ,-	11	6
CILIATES	I				
COLPODEA	Non-identified species 1			9	0.05
PROSTOMATIDA	Balanion planctonicum	31	5	38	14
	Holophrya sp. 1	2	0,06		
	Urotricha furcata	17	2,5	43	6
	Urotricha pelagica	79	0,46	80	0,36
	Urotricha sp. 1	31	4	13	3
	Urotricha sp. 2			27	5
GYMNOSTOMATIDA	Askenasia spp.	79	0,34	91	1,4
	Mesodinium pulex	40	0,16	68	2
	Rhopalophrya sp.	4	0,02	7	0,02
	Spathidium-like	2	0,02	9	0,03
HYMENOSTOMATA	Stokesia vernalis	2	0,04		
	Uronema sp.			5	0,18
OLIGOTRICHIDA	Pelagostrombidium fallax	67	1,32	61	1,3
	Rimostrombidium sp.	73	0,68	39	1,2
	Strombidium sp.	73	2,2	61	4
SUCTORIA	Sphaerophrya sp.			9	0,05
NON-IDENT. CILIATES	Non-identified species 1	6	0,12	2	0,01
	Non-identified species 2			2	0,01
	Non-identified species 3			2	0,01
	Non-identified species 5	6	0,06		
	Non-identified species 6	4	0,08	2	0,01
	Non-identified species 7	2	0,02	2	0,02
	Non-identified species 8	4	0,04		

Fig. 2. Changes in phytoplankton composition throughout the studied period in biovolume percentage of the main taxonomic groups.

Tab. 3. Composition of planktonic microbial groups during 1996 and 1997 ice-free periods. Average and range of the biovolumes percentages for the different taxonomic categories encountered.

	Average	Maximum	Minimum
PHYTOPLANKTON			
Cyanobacteria	0.1	1.9	0.0
Volvocales	0.4	5.5	0.0
Chlorococcales	8.8	36.2	0.5
Desmidiales	0.0	0.3	0.0
Xantophyceae	0.1	1.1	0.0
Chrysophyceae	40.6	93.1	2.9
Bacillariophyceae	0.2	3.7	0.0
Primnesiophhyta	0.0	0.2	0.0
Cryptophyta	16.9	85.7	0.0
Dinophyta	31.8	90.3	1.0
HETER. FLAG.			
Chrysophyceae	78.5	100.0	6.4
Coanoflagellata	4.7	35.7	0.0
Bodonids	3.6	45.0	0.0
Criptomonads	0.2	7.6	0.0
Non-identified sps	12.9	92.5	0.0
CILIATES			
Gymnostomatida	22.2	100.0	0.0
Prostomatida	30.4	100.0	0.0
Oligotrichida	43.1	98.2	0.0
Others	1.4	47.4	0.0

Tab. 4. Range and average of microbial groups biomass (μ g C Γ^1) for both ice-free periods studied. Quotient between autotrophic *versus* heterotrophic biomass. And percentage of the microbial groups biomass *versus* total microbial biomass for phytoplankton (PHY), and *versus* heterotrophic biomass for bacteria (BAC), heterotrophic flagellates (HNF) and ciliates (CIL). N= number of samples with data available.

	Range	Average	Ν
Bacteria	1.8-9.2	3.9	38
Autotrophic picoplankton	0-0.17	0.01	109
Phytoplankton	1.3-236	39.1	104
Heterotrophic flagellates	0.04 - 27.8	4.2	110
Ciliates	0–14.6	1.9	112
Autotrophic / Heterotrophic	0.4–18.6	4.3	35
% PHY – total	29-95	73	35
% BAC – heterotrophic	11-93	47	35
% HNF – heterotrophic	2-77	32	35
% CIL – heterotrophic	0-52	18	35

Fig. 3. Isopleths of phytoplankton biovolume $(mm^3 m^{-3})$ for the ice-free period of 1996 and 1997 in Lake Redó. Small crosses indicate sampling points.

Fig. 4. Isopleths of heterotrophic nanoflagellates biovolume (mm³ m⁻³) for the ice-free period of 1996 and 1997 in Lake Redó. Small crosses indicate sampling points.

Fig. 5. Isopleths of ciliates biovolume $(mm^3 m^{-3})$ for the ice-free period of 1996 and 1997 in Lake Redó. Small crosses indicate sampling points.

4. DISCUSSION

The number of species inhabiting planktonic systems is usually considerable. Although most appear only sporadically, they constitute a pool of biodiversity which allows the ecosystem to respond to changes in environmental conditions (Margalef 1974; Harris 1986). In Lake Redó, we found that 60% of the species appeared in less than 30% of the samples (Tab. 2). The number of species is not a particularly useful parameter for comparative purposes since it is highly dependent on the counting effort and taxonomical accuracy (Kalff & Knoechel 1978). Nevertheless, the number of species encountered in Lake Redó is greater (at least in the case of phytoplankton and ciliates) than that recorded in high mountain lakes in the Alps (Felip, unpublished data). The morphology of Lake Redó, in particular its depth, might explain this greater diversity in planktonic microorganisms, since the water column provides a larger range of microhabitats.

Tab. 5. Total autotrophic (AUT) and total heterotrophic (HET) plankton biomass during the ice-free period of 1996, values integrated for all water column. And ratio between both plankton components (Aut/Het).

	BIOMASS	RATIO		
	2074	550	2.76	
July	2074	552 1425	3.76	
September	949 1174	1433	0.00	
October	1463	446	3.28	
November	2073	782	2.65	
December	455	509	0.90	

Microbial biomass was dominated by the autotrophic component (phytoplankton); broadly speaking, the microbial plankton biomass was in the following ratios: 10:2:2:1 PHY:HNF:BAC:CIL. A study conducted over a whole year showed an increase in the heterotrophic fraction during winter, but phytoplankton still dominated the total microbial biomass (Felip 1997). These microbial plankton ratios were similar to those observed in a oligo-mesotrophic lake by Amblard *et al.* (1993), but the lack of comparable data means we can not speculate as to the universality of these results. One part of the autotrophic component in Lake Redó is, in fact, composed of mixotrophic algae, such as Gymnodinium, Chromulina, Ochromonas, Dinobryon cylindricum, and Cryptomonas ovata, which can behave partially or entirely as heterotrophs (Popovský & Pfiester 1990; Kristiansen & Andersen 1986; Bird & Kalff 1986; Sanders & Porter 1988). Given their frequency in the samples and their abundance (Tab. 2), whether these species should be considered autotrophic or heterotrophic would make a significant difference to the ratio between both compartments. On the other hand, some ciliate species found in Lake Redó might also be mixotrophs (Dolan 1992), though they constituded only a small fraction of the biomass and as such would not change the pattern drawn significantly. A study of biomass distribution in freshwater plankton communities, with data from 57 lakes (Del Giorgio & Gasol 1995), showed an increase in the ratio between autotrophic and heterotrophic biomasses from unproductive to extremely productive lakes, and suggested a tendency toward higher heterotrophic proportions in oligotrophic systems. What we observed in Lake Redó, when zooplankton data were available (summer 1996), was that the ratio between autotrophic and heterotrophic biomass varied from month to month (Tab. 5). Periods with a higher propor-

Fig. 6. Temporal distribution of microbial plankton biomass (μ g C m⁻²), for each group and throughout the ice-free period of 1996 and 1997. Note the change in biomass scale (y axis) between the two graphs.

tion of autotrophic biomass were followed by periods in which plankton was dominated by the heterotrophic component (Tab. 5). This was due either to an increase of zooplankton biomass (as was the case in August because of an increase in Dyaptomus abundance) or to a large decrease in phytoplankton biomass (December).

Bacteria was the most significant contributor to heterotrophic biomass (Tab. 4), nevertheless heterotrophic flagellates and ciliates occasionally showed higher biomasses than bacteria (Fig. 6), and no differences were observed between the average biomasses of heterotrophic flagellates and bacteria (Tab. 4). Bacterial abundance and biomass did not change significantly with depth (data not shown) or time (Fig. 6), which could indicate a stationary state of bacterial growth and fate rates, though it might simply reflect the precision of the detection method. Were there to be a stationary state of bacterial growth, then the bacteria abundance observed could be related to a threshold value below which grazing by bacterivores or other mortality factors, such us viruses, become inefficient (Güde 1989, Murray & Jackson 1992).

The main characteristics of planktonic algae in Lake Redó can be summarized as follows: low number of autotrophic picoplankton, diatoms, xanthophyceae and prymnesiophyta; high number of small cells, and a dominance of flagellated forms (Chrysophyceae, Dinophyta) over non-flagellated cells (mainly Chlorococcales and the chrysophycea Stichogloea doerdeleinii) which increased during the autumn mixing period. The increase in non-flagellated cells during the autumn mixing period has been observed on a previous occasion (Felip 1997). This pattern seems to be quite general, although changes in the species involved and in the proportion of non-flagellated cells occurred. For instance, during autumn 1984 non-flagellated cells represented up to 90% of phytoplankton biovolume and the desmidiacea Cosmarium sp., rare in 1996-97 (Tab. 2), reached high abundances.

The average and range of phytoplankton biomass found (Tab. 4) are in line with those reported for ultraoligotrophic and oligotrophic lakes (Wetzel 1983). Phytoplankton maxima were related to improved growth conditions due to nutrient input during the column mixing periods, a pattern widely described for oligotrophic dimictic lakes. Ciliates and heterotrophic flagellates seem to follow this algae increase, and their maximum was located at the same time (ciliates in June 1997) or later (heterotrophic flagellates in August 1996). However, no clear relationships could be established for the sample periodicity applied here (Fig. 6). There was a significant interannual variation in the microbial plankton community, in terms of species composition and dominance (Tab. 2), and in biomass values and temporal patterns (Figs 3, 4, 5 and 6). In 1996, we did not sample immediately after the lake cover melted, as we had done in 1997 (June sampling), and samples from July in both years were quite similar. In contrast, the pattern for autumn 1996 was different from that observed in 1997. In 1997 an increase in phytoplankton biomass was not recorded (according to chlorophyll content measurements, T. Buchaca, pers. com), and bacteria, heterotrophic flagellates and ciliates biomass were depleted. The consistent appearance of a decline, as indicated from sampling at several dates, suggests that this was not a random event but the result of a collapse in the microbial community due to some general limitation.

ACKNOWLEDGMENTS

We thank T. Buchaca, LL. Camarero, J. Piera, S. Pla and M. Ventura for field work support. This study was undertaken with the support of the project MOLAR, Measuring and modeling the dynamic response of remote mountain lake ecosystems to environmental change, No. ENV4-CT95-0007 of the Environmental and Climate Program of the European Commission.

REFERENCES

- Amblard, C., T. Sime-Ngando, S. Rachiq & G. Bourdier. 1993. Importance of ciliated protozoa in relation to the bacterial and phytoplanktonic biomass in an oligo-mesotrophic lake, during the spring diatom bloom. *Aquat. Sci.*, 55:1-9.
- Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer & F. Thingstad. 1983. The ecological role of water column microbes in the sea. *Mar. Ecol. Prog. Ser.*, 10: 257-263.
- Bird, D.F. & J. Kalff. 1986. Bacterial grazing by planktonic algae. Science, 231: 493-495.
- Borsheim K.Y. & G. Bratbak. 1987. Cell volume to carbon conversion factors for a bacterivorous *Monas* sp. enriched from seawater. *Mar. Ecol. Prog. Ser.*, 36: 171-175.
- Capblanq, J. 1972. Phytoplancton et productivitié primaire de quelques lacs d'altitude dans les Pyrénées. *Annales de Limnologie*, 8: 231-321.
- Catalan, J. 1988. Physical properties of the environment relevant to the pelagic ecosystem of a deep high-mountain lake (Estany Redó, Central Pyrenees). Oecol. aquat., 9: 89-123.
- Catalan, J. 1989. The winter cover of a high-mountain Mediterranean lake (Estany Redó, Pyrenees). Water Resour. Res., 25: 519-527.
- Catalan, J. 1992. Evolution of dissolved and particulate matter during the ice-covered period in a deep, high-mountain lake. *Can. J. Fish. aquat. Sci.*, 49: 945-955.
- Del Giorgio, P. & J.M. Gasol. 1995. Biomass distribution in freshwater plankton communities. *Am. Nat.*, 146: 135-152.
- Dolan, J. 1992. Mixotrophy in ciliates: a review of *Chlorella* symbiosis and chloroplast retention. *Mar. Microb. Food Webs*, 6: 115-132.
- Felip, M. 1997. Ecologia del microplàncton d'un estany profund d'alta muntanya (Redó, Pirineus). PhD. University of Barcelona.
- Felip, M., B. Sattler, R. Psenner & J. Catalan. 1995. Highly active microbial communities in the ice and snow cover of high mountain lakes. *Appl. Environ. Microbiol.*, 61: 2394-2401.
- Felip, M., Ll. Camarero & J. Catalan. (1999). Temporal changes of microbial assemblages in the ice and snow cover of a high mountain lake. *Limnol. Oceanogr.*, 44: 973-987.

- Felip, M. & J. Catalan. (1999). The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J. Plankton Res.: (in press).
- Güde, H. 1989. The role of grazing on bacteria in plankton succession. In: U. Sommer (Ed.). *Plankton Ecology*. Springer-Verlag: 337-364.
- Halac, S., M. Felip, Ll. Camarero, S. Sommaruga-Wögrath, R. Psenner, J. Catalan & R. Sommaruga. 1997. An *in situ* enclosure experiment to test the solar UV-B impact on microplankton in a high altitude mountain lake: 1) lack of effect on phytoplankton species composition and growth. J. *Plankton Res.*,11: 1671-1687.
- Harris, G.P. 1986. Phytoplankton ecology: structure, function and fluctuation. Cambridge University Press: 384 pp.
- Kalf, J. & R. Knoechel. 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst., 9: 475-495.
- Kristiansen, J. & R. A. Andersen (Eds). 1986. Chrysophytes: aspects and problems. Cambridge University Press: 337 pp.
- MacIsaac, E.A. & J.G. Stockner. 1993. Enumeration of photototrophic picoplankton by autofluorescence microscopy. In: P.F. Kemp, B.F. Sherr, E.B. Sherr and J.J. Cole (Eds), *Handbook of methods in Aquatic Microbial Ecology*. Lewis Publishers: 229-240.
- Margalef, R. 1974. Ecología. Omega, Barcelona.
- Margalef, R. 1983. Limnología. Omega, Barcelona.
- Margalef, R., L. Campas, M.R. Miracle & J.M. Vilaseca. 1975. Introducción al estudio de los lagos pirenaicos. *Naturalia Hispanica*, 4: 1-47.
- Müller, H. & W. Geller. 1993. Maximum growth rates of aquatic ciliates protozoa: the dependence on body size and temperature reconsidered. *Arch. Hydrobiol.*, 126: 315-327.
- Mullin, M.M., P.R. Sloan & R.W. Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. *Limnol. Oceanogr.*, 11: 307-311.
- Murray, A. G. & G. A. Jackson. 1992. Viral dynamics: A model of the effects of size shape motion and abundance of singled-celled planktonic organisms and other particles. *Mar. Ecol. Prog. Ser.*, 89: 103-116.
- Norland, S. 1993. The relationship between biomass and volume of bacteria. In: P.F. Kemp, B.F. Sherr, E.B. Sherr & J.J. Cole (Eds), *Handbook of methods in Aquatic Microbial Ecology*. Lewis Publishers: 303-307.
- Pechlaner, R. 1971. Factors that control the production rate and biomass of phytoplankton in high-mountain lake. *Mitt. Internat. Verein. Limnol.*, 19: 125-145.
- Pechlaner, R., G. Bretscho, P. Gollmann, H. Pfeifer, M. Tilzer & H.P. Weissenbach. 1970. The production process in two high-mountain lakes (Vorderer and Hinteres Finstertaler See, Küthai, Austria). In: Z. Kajak & Hillbricht (Eds), *Productivity problems in freshwaters*. Unesco IBP Symp. Kazimier, Poland: 237-267.
- Popovský, J. & A. Pfiester. 1990. Süßwasserflora von Mitteleuropa. Band 6. Dinophyceae. Gustav Fisher Verlag.

- Porter, K.G. & Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. *Limnol. Oceanogr.*, 25: 943-948.
- Porter, K.J., H. Paerl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner. 1988. Microbial interactions in lake food webs. In: S.R. Carpenter (Ed.), *Complex interactions in lake communities*. Springer-Verlag: 209-227.
- Putt, M. & D.K. Stoecker. 1989. An experimentally determined carbon:volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. *Limnol. Oceanogr.*, 34: 1097-1103.
- Sanders R. W. & K. G. Porter. 1988. Phagotrophic phytoflagellates. In: K. C. Marshall (Ed.), Advances in microbial ecology 10. Plenum: 167-192.
- Sherr, E.B. & B.F. Sherr. 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In: P.F. Kemp, B.F. Sherr, E.B. Sherr & J.J. Cole (Eds), *Handbook* of methods in Aquatic Microbial Ecology. Lewis Publishers: 207-212.
- Sommaruga, R. & F. Garcia-Pichel. 1999. UV-absorving mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. *Arch. Hydrobiol.*, 144: 255-269.
- Sommaruga, R., B. Sattler, A. Oberleiter, A. Wille, S. Wögrath-Sommaruga, R. Psenner, R. Grones, M. Felip, Ll. Camarero, S. Pina & J. Catalan. (1999). An *in situ* enclosure experiment to test the solar UVB impact on plankton in a high altitude mountain lake: II) effects on the microbial food web. *J. Plankton Res.*, 21: 859-876.
- Sournia, A. (Ed.) 1978. Phytoplankton manual. Unesco.
- Stockner, J.G. & K.G. Porter. 1988. Microbial food webs in freshwater planktonic ecosystems. In: S.R. Carpenter (Ed.), *Complex interactions in lake communities*. Springer-Verlag: 69-83.
- Straškrabová, V., Č. Callieri, P. Carrillo, L. Cruz-Pizarro, J. Fott, P. Hartman, M. Macek, J.M. Medina-Sánchez, J. Nedoma & K. Šimek. 1999. Investigations on pelagic food webs in mountain lakes - aims and methods. In: Straškrabová, V., C. Callieri & J Fott (Eds), *Pelagic food web in mountain lakes. MOuntain LAkes Research Program.* J. Limnol., 58(2): 77-87.
- Tilzer, M. 1973. Diurnal periodicity in the phytoplankton assemblage of a high mountain lake. *Limnol. Oceanogr.*, 18: 15-30.
- Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J. Plankton. Res., 13: 167-185.
- Weisse, T. 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: J.G. Jones (Ed.), *Advances in microbial ecology*, 13. Plenum Press: 327-370.
- Wetzel, R.G. 1983. *Limnology*. 2nd edition. Sangres Collegue: 767 pp.
- Whatne, B.M., & H.E. Hansen (Eds). 1997. MOLAR Project Manual.- NIVA report 0-96061: 176 pp.