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Supplementary I 

FUNDAMENTAL EQUATIONS 

 

The wind shear stress and net heat flux were calculated from theoretical and empirical equations 

using the observed data. Using the 2 m height wind speed (W2) measured in the field, the wind 

shear stress (in N m-2) at the surface is given by: 

� = �au*
2 ,  (1) 

where �a  is the air density (kg m-3) and u* is the surface friction velocity under the assumption 

of a neutral MET condition (e.g. Yu et al., 1983). It is given by the logarithmic neutral profile 

formula at a height of 2 m:  

u* = kW2

ln 2 z0( ) ,  

with the von Karman constant k = 0.4 and the roughness height of the water surface (z0 ~ 1 � 10-3 

m reported by Arya 2001). When the net heat flux is computed, it is necessary to use the wind 

speed at 10 m height (W10). With a logarithmic formula, the wind speed is given by: 

( )
( ) 2

0

0
10 2ln

10ln
W

z
z

W = .  

The net heat flux (W m-2) on the water surface (Knauss, 1996), including solar radiation, is 

given by 

Hnet = Hsw 1�� sw( ) + Hlw � He ± Hc , (2) 

where Hsw, Hlw, He, and Hc (W m-2) are the shortwave radiation, net longwave radiation, latent 

heat flux, and sensible heat flux, respectively, and αsw is the albedo of shortwave radiations, 

ranging form 0.06 to 0.10, depending on the zenith angle and water surface conditions, reported 

by Serreze and Barry (2005). The empirical and theoretical equations used to determine these 

terms are described in the following paragraphs.  

Hlw is the Stefan-Boltzmann equation modified by several environmental factors: 
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( ) ( )[ ] 4266 17.00.11037.91 swalwaiw TCTH εαλ −+×−= −

, 

 

where εw is the emissivity of the water body (0.97), λ is the Stefan-Boltzmann constant (5.67 × 

10-8 W °K-4 m-2), Ta is the air temperature (K), Ts is the surface water temperature (K), αlwa is the 

albedo of incoming longwave radiation (equal to 0.03 as determined by Henderson-Sellers, 

1986), and C is the cloud cover fraction (0 to 1). With the empirical approximation (Fischer, 

1979; Colomer et al., 1996), He is given by 

He = ce�aLEW10m (es � ea ) pa ,  

where Ce is a dimensionless coefficient (1.3 × 10-3) (Pond et al., 1971; Hicks, 1972; Kondo, 

1975), LE is the heat of vaporisation (2.45 × 106 J kg-1), ea is the air vapour pressure (hPa) at Ta, 

es is the vapour pressure (hPa) at Ts, and pa is the air pressure (hPa). Hc is the empirical 

relationship (Fischer, 1979) given by 

Hc = cccpa�aW10m (Ta � Ts ) ,  

where cc is a dimensionless coefficient (1.3 × 10-3) (Pond et al., 1971; Hicks, 1972; Kondo, 

1975) and cpa is the specific heat capacity of air (1006 J kg-1 °C-1). 

The Schmidt stability ( St  [J m-2]) defined in Idso (1973) was used as the indicator in our 

study, and it is given as 

St = g
A0

z � zE( ) A z( ) � � � z( )[ ]
0

zm⇥ dz , (3) 

where �  is the mean density (kg m-3) over the lake, zE  is the height (m) at �  from the 

bottom, z is the height (m) from the lake bottom, zm is the maximum height (m), ρ(z) is the 

density (kg m-3) at z, computed by the UNESCO equation of state with water temperature and 

zero salinity (UNESCO, 1981), A0 is the surface area of the lake (m2), and A(z) is the area at z 

(m2). The height of the thermocline (zt) from the water surface is defined by: 

zt  = zm − zE .  
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For surface layer mixing, defined in this study as the mixing that occurs between the lake 

surface and the upper thermocline, the penetrative convection velocity, w*  (m s-1) and water 

friction velocity, u*w  (m s-1), were used to understand which friction velocity was dominant. 

The former is related to the buoyancy force and indicates mixing by cooling (Deardoff, 1970). 

The latter is yielded from wind inputs and indicates mixing by wind-induced turbulence. These 

velocities are described respectively by: 

w* = ��gztHnet ⇥0cp( )1 3
, (4) 

where �0  is the water density (kg m-3), cp  is the specific heat capacity of water (4186 J kg-1 

°C-1), g is the acceleration of gravity (m s-2), α is the coefficient of thermal expansion (°C-1), and 

u*w = (⇥ �0 )1 2 . (5) 

The ratio of the friction velocity to the convection (u*w/w*) indicates whether contributions 

from w* or from u*w are the dominant source of turbulent energy to the SML (Read et al. 2012). 

The threshold (0.75), which is the balanced input from w* and u*, was proposed by Imberger 

(1985) and supported by field measurements (e.g. MacIntyre et al. 2002). 

The energy balance can be correlated with the total net heat content (J m-2) (e.g. Wetzel and 

Likens, 1991), which is given by: 

Qt =
cp�0

A0

T z( ) A z( )dz
0

zm� , (6) 

where T(z) is the temperature (°C) at a height z (m) from the bottom. The energy budget between 

the maximum and minimum total net heat contents (i.e. qt max is the maximum of A0Qt and qt min 

is the minimum of A0Qt) represents the stored energy in a water body during the one typical 

mixing cycle each year. A widely accepted quantity that expresses the change in seasonal heat 

content is the Birgean heat budget (J m-2) (Hutchinson 1957), given by: 

med

minmax

A
qqB tt

h
−

= , (7) 
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where Amed is the mean surface of the lake (m2). Bh is a useful indicator for describing the 

seasonal trend of thermal dynamics in a lake. Ambrosetti and Barbanti (2002) derived the 

empirical relationship between Bh  and zm : log10(Bh ) = 0.451⇥ log10(zm ) � 0.0015 ⇥ zm + 4.98 , by 

studying the annual change in heat content with respect to maximum depth among ~30 lakes 

measured in the field. 

 

Supplementary II  

PRINCIPAL COMPONENT ANALYSIS (PCA) AND PARTIAL CORRELATION 

 

With the four variables (
!
Xi , i  = 1 to 4) and the standard score of their datasets ( n  observed 

data), a matrix is given as  
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where ijx  indicates the i th variable for the j th observed dataset. For X , the normal sample 

covariance matrix is defined as 

⎥
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=
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R , (9) 

where ikR  is a correlation coefficient with ix  and kx , which are the mean values for the i or k 

variable, provided by 

Rik =
xij � xi( ) xkj � xk( )j⇥

xij � xi( )2

j⇥ xkj � xk( )2

j⇥
. (10) 

However, these correlation coefficients may not provide good scores for components in the 

PCA if one variable is indirectly controlled by the other variables in reality even though they are 
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likely to appear independent. For example, netH  is indirectly affected by wind speed through 

sensible heat and latent heat fluxes. When computing the correlation between netH  and other 

variables ( tS  ratio and GAPh ), the effect of wind speed should be eliminated as a background 

aspect (i.e. the third variable), which can be considered as a spurious relationship. 

Therefore, to derive a substantial relationship and remove a spurious relationship between 

two variables, we introduced partial correlation (Guilford and Fruchter, 1973), which evaluates 

the degree of association between two variables, with limited use. When the correlation between 

iX
!

 and kX
!

 without the effect of ℓ

"
X  is computed, a general form of the correlation 

coefficient is given by:  

Rik ,ℓ = � Rik � RiℓRkℓ

1� Riℓ
2 1� Rkℓ

2
, (11) 

where ikR , ℓiR , and ℓkR  are correlation coefficients (i,k), (i, ℓ ), and (k,ℓ ). The original matrix 

R  becomes R' . The modified R'  can be decomposed as ΛCCT  using the eigenvalue 

matrix (Λ ) and the orthogonal coefficient matrix (C ) between the original variables and the 

principal components. These matrices are given by   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

4

3

2

1

000
000
000
000

λ

λ

λ

λ

Λ  and 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

44434241

34333231

24232221

14131211

cccc
cccc
cccc
cccc

C   with ICCT =  (a unit matrix).  

with the matrix (Y ) for principal components given by  
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CXY = : (12) 
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where j =1 to n. The variance of Y  becomes  

( ) ( ) ( ) ( )[ ] TTTT C'µµXXC'C'XC'YYY, −=== Evarvarcov , (13) 

where ( )cov , ( )var , and ( )E  are covariance, variance and expectation respectively, and µ  

is the mean (= ( )XE ). Here, µ =0 because X  is described in standard score. ( )TXXE  

corresponds to R , which can be replaced with R' . Eq. (10) then becomes  

( ) ΛΛCCCCCCR'YY, TTT ===cov . (14) 

Thus, the principal components are mutually independent. They can consist of new 

orthogonal coordinates dependent on the eigenvalue vector. The relative variance scales 

explained by each principal component are given by �i �ii� (i =1 to 4). The above procedures 

are shown in the flowchart (Supplementary Fig.1).  
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Supplementary Fig. 1. Flowchart of the procedures for the PCA and partial corrleation. 
 


